Gotowa bibliografia na temat „Protein-small molecule interactions”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Protein-small molecule interactions”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Protein-small molecule interactions"
Kuusk, Ave, Helen Boyd, Hongming Chen i Christian Ottmann. "Small-molecule modulation of p53 protein-protein interactions". Biological Chemistry 401, nr 8 (28.07.2020): 921–31. http://dx.doi.org/10.1515/hsz-2019-0405.
Pełny tekst źródłaOttmann, Christian. "Small-molecule modulation of protein–protein interactions". Drug Discovery Today: Technologies 10, nr 4 (grudzień 2013): e499-e500. http://dx.doi.org/10.1016/j.ddtec.2013.08.001.
Pełny tekst źródłaPollock, Julie A., Courtney L. Labrecque, Cassidy N. Hilton, Justin Airas, Alexis Blake, Kristen J. Rubenstein i Carol A. Parish. "Small Molecule Modulation of MEMO1 Protein-Protein Interactions". Journal of the Endocrine Society 5, Supplement_1 (1.05.2021): A1031. http://dx.doi.org/10.1210/jendso/bvab048.2110.
Pełny tekst źródłaLinhares, Brian M., Jolanta Grembecka i Tomasz Cierpicki. "Targeting epigenetic protein–protein interactions with small-molecule inhibitors". Future Medicinal Chemistry 12, nr 14 (lipiec 2020): 1305–26. http://dx.doi.org/10.4155/fmc-2020-0082.
Pełny tekst źródłaGuo, Z. "Designing Small-Molecule Switches for Protein-Protein Interactions". Science 288, nr 5473 (16.06.2000): 2042–45. http://dx.doi.org/10.1126/science.288.5473.2042.
Pełny tekst źródłaLi, Xiyan, Xin Wang i Michael Snyder. "Systematic investigation of protein-small molecule interactions". IUBMB Life 65, nr 1 (7.12.2012): 2–8. http://dx.doi.org/10.1002/iub.1111.
Pełny tekst źródłaD’Abramo, C. M. "Small Molecule Inhibitors of Human Papillomavirus Protein - Protein Interactions". Open Virology Journal 5, nr 1 (4.07.2011): 80–95. http://dx.doi.org/10.2174/1874357901105010080.
Pełny tekst źródłaSong, Yun, i Peter Buchwald. "TNF Superfamily Protein-Protein Interactions: Feasibility of Small- Molecule Modulation". Current Drug Targets 16, nr 4 (6.04.2015): 393–408. http://dx.doi.org/10.2174/1389450116666150223115628.
Pełny tekst źródłade Vink, Pim J., Sebastian A. Andrei, Yusuke Higuchi, Christian Ottmann, Lech-Gustav Milroy i Luc Brunsveld. "Cooperativity basis for small-molecule stabilization of protein–protein interactions". Chemical Science 10, nr 10 (2019): 2869–74. http://dx.doi.org/10.1039/c8sc05242e.
Pełny tekst źródłaAeluri, Madhu, Srinivas Chamakuri, Bhanudas Dasari, Shiva Krishna Reddy Guduru, Ravikumar Jimmidi, Srinivas Jogula i Prabhat Arya. "Small Molecule Modulators of Protein–Protein Interactions: Selected Case Studies". Chemical Reviews 114, nr 9 (27.03.2014): 4640–94. http://dx.doi.org/10.1021/cr4004049.
Pełny tekst źródłaRozprawy doktorskie na temat "Protein-small molecule interactions"
Napoleon, Raeanne L. "Understanding small molecule-protein interactions". Thesis, Boston University, 2012. https://hdl.handle.net/2144/31592.
Pełny tekst źródłaPLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
The binding of small molecules to a protein is among the most important phenomena in the chemistry of life; the activity and functionality of many proteins depend critically on binding small molecules. A deep understanding of protein-small molecule interactions and the interplay between ligation and function can give valuable insight into key systems of interest. The complete characterization of any small molecule-protein interaction requires quantification of many interactions and the pursuit of such information is the purpose of this body of work. The discovery of binding regions on proteins, or "hot spots," is an important step in drug development. To this end, a highly regarded and robust fragment-based protocol has been developed for the detection of hot spots. Firstly, we use this protocol in conjunction with other computation techniques, such as homology modeling, to locate the allosteric binding site of £-phenylalanine in Phenylalanine Hydroxylase. Secondly, computational fragment mapping was employed to locate the site of allostery for Ras, an important signaling protein. Lastly, the identification of hot spots for many unligated protein targets is presented highlighting the importance of a reliable way to predict druggability computationally. The second part of this dissertation shifts focus to the development of electrostatic models of small molecules. It is widely believed that classical potentials can describe neither vibrational frequency shifts in condensed phases nor the response of vibrational frequencies to an applied electric field, the vibrational Stark effect. In this work, an improved classical molecular electrostatic model for the CO ligand was developed to faithfully model these phenomena. This model is found to predict the vibrational Stark effect and Fe-CO binding energy with unprecedented accuracy for such a classical model. As an extension of this work, a geometrically dependent water potential was developed. This work has shown that comparison of results obtained from current water models against experimentally determined proton momentum distributions is an invaluable benchmark
2031-01-01
Albertoni, Barbara [Verfasser]. "Biophysical analysis of protein-protein and protein-small molecule interactions / Barbara Albertoni". Bonn : Universitäts- und Landesbibliothek Bonn, 2011. http://d-nb.info/1044846909/34.
Pełny tekst źródłaPark, Chihyo. "Combinatorial design and synthesis of peptidomimics and small molecules for protein-protein interactions". Texas A&M University, 2006. http://hdl.handle.net/1969.1/4692.
Pełny tekst źródłaJackson, Matthew. "Assay development and investigation of small molecule and amyloid protein interactions". Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/6549/.
Pełny tekst źródłaMittal, Sumit [Verfasser], Elsa [Gutachter] Sanchez-Garcia i Simon [Gutachter] Ebbinghaus. "Small molecule modulation of protein-protein interactions / Sumit Mittal ; Gutachter: Elsa Sanchez-Garcia, Simon Ebbinghaus". Bochum : Ruhr-Universität Bochum, 2017. http://d-nb.info/1133361854/34.
Pełny tekst źródłaNilsson, Jonas. "Design, Synthesis and Characterization of Small Molecule Inhibitors and Small Molecule : Peptide Conjugates as Protein Actors". Doctoral thesis, Linköpings universitet, Organisk Kemi, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-3943.
Pełny tekst źródłaFagiewicz, Robert Mateusz. "Structural analysis of protein-small molecule interactions by a crystallographic and spectroscopic approach". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13892/.
Pełny tekst źródłaKung, Wei-Wei. "Protein-protein interactions and small molecule targeting of the multisubunit SOCS2-EloBC-Cul5-Rbx2 E3 ubiquitin ligase". Thesis, University of Dundee, 2018. https://discovery.dundee.ac.uk/en/studentTheses/b2dd4bc4-9a13-428b-a45a-bc46b1d9c116.
Pełny tekst źródłaWang, Lin. "DEVELOPMENT OF A NEW SCREENING AND DETECTION METHOD FOR IDENTIFYING PROTEIN-SMALL MOLECULE INTERACTIONS". OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/861.
Pełny tekst źródłaKrumm, Stefanie A. [Verfasser], i Dieter [Akademischer Betreuer] Wolf. "Protein-protein and protein-small-molecule inhibitor interactions in the measles virus replication complex / Stefanie A. Krumm. Betreuer: Dieter Wolf". Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2015. http://d-nb.info/1069815470/34.
Pełny tekst źródłaKsiążki na temat "Protein-small molecule interactions"
Waldmann, H., i M. Koppitz, red. Small Molecule — Protein Interactions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0.
Pełny tekst źródłaname, No. Small molecule-protein interactions. Berlin: Springer, 2003.
Znajdź pełny tekst źródłaH, Waldmann, i Koppitz M. 1965-, red. Small molecule--protein interactions. Berlin: Springer, 2003.
Znajdź pełny tekst źródłaVassilev, Lyubomir, i David Fry, red. Small-Molecule Inhibitors of Protein-Protein Interactions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17083-6.
Pełny tekst źródłaByun, Wan Gi. Discovery of Small-Molecule Modulators of Protein–RNA Interactions for Treating Cancer and COVID-19. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7814-2.
Pełny tekst źródłaSheng, Chunquan, i Gunda I. Georg, red. Targeting Protein-Protein Interactions by Small Molecules. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0773-7.
Pełny tekst źródłaWaldmann, Herbert, i Marcus Koppitz. Small Molecule -- Protein Interactions. Springer London, Limited, 2013.
Znajdź pełny tekst źródłaWaldmann, Herbert. Small Molecule - Protein Interactions. Springer, 2012.
Znajdź pełny tekst źródłaWaldmann, Herbert, i Marcus Koppitz. Small Molecule - Protein Interactions. Springer, 2014.
Znajdź pełny tekst źródłaFry, David, i Lyubomir Vassilev. Small-Molecule Inhibitors of Protein-Protein Interactions. Springer, 2011.
Znajdź pełny tekst źródłaCzęści książek na temat "Protein-small molecule interactions"
Reinhard-Rupp, J., i G. Wess. "Drug Discovery Opportunities". W Small Molecule — Protein Interactions, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_1.
Pełny tekst źródłaBriem, H. "De Novo Design Methods". W Small Molecule — Protein Interactions, 153–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_10.
Pełny tekst źródłaBreinbauer, R., I. R. Vetter i H. Waldmann. "From Protein Domains to Drug Candidates — Natural Products as Guiding Principles in Compound Library Design and Synthesis". W Small Molecule — Protein Interactions, 167–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_11.
Pełny tekst źródłaWeber, L. "Discovery of New MCRs, Chemical Evolution and Lead Optimization". W Small Molecule — Protein Interactions, 189–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_12.
Pełny tekst źródłaHermkens, P. H. H., i G. Müller. "The Impact of Combinatorial Chemistry on Drug Discovery". W Small Molecule — Protein Interactions, 201–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_13.
Pełny tekst źródłaHopkins, A. L., i C. R. Groom. "Target Analysis: A Priori Assessment of Druggability". W Small Molecule — Protein Interactions, 11–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_2.
Pełny tekst źródłaWells, J., M. Arkin, A. Braisted, W. DeLano, B. McDowell, J. Oslob, B. Raimundo i M. Randal. "Drug Discovery at Signaling Interfaces". W Small Molecule — Protein Interactions, 19–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_3.
Pełny tekst źródłaWillson, T. "Chemical Genomics of Orphan Nuclear Receptors". W Small Molecule — Protein Interactions, 29–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_4.
Pełny tekst źródłaJhoti, H. "High-Throughput X-Ray Techniques and Drug Discovery". W Small Molecule — Protein Interactions, 43–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_5.
Pełny tekst źródłaKessler, H., M. Heller, G. Gemmecker, T. Diercks, E. Planker i M. Coles. "NMR in Medicinal Chemistry". W Small Molecule — Protein Interactions, 59–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Protein-small molecule interactions"
Jongwan, Kim, Hocheol Lim i K. T. No. "Abstract A45: In silico drug discovery targeting Hippo pathway and YAP-TEAD protein-protein interactions for small-molecule anticancer agent". W Abstracts: AACR Special Conference on the Hippo Pathway: Signaling, Cancer, and Beyond; May 8-11, 2019; San Diego, CA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1557-3125.hippo19-a45.
Pełny tekst źródłaKabir, Abbas, i Aaron Muth. "Abstract 1311: Inhibition of gankyrin-tumor suppressor protein interactions due to small molecule induced conformational change". W Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-1311.
Pełny tekst źródłaKabir, Abbas, i Aaron Muth. "Abstract 1311: Inhibition of gankyrin-tumor suppressor protein interactions due to small molecule induced conformational change". W Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-1311.
Pełny tekst źródłaTseng, Fan-Gang. "From High Performance Protein Micro Chip Toward Ultra High Sensitive Single Molecule Nano Array". W ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82291.
Pełny tekst źródłaToretsky, Jeffrey A., Hayriye V. Erkizan, Yali Kong, Melinda Merchant, Julie S. Barber-Rotenberg, Milton L. Brown i Aykut Üren. "Abstract 3411: Targeting of EWS-FLI1 with small molecule YK-4-279 reduces xenograft growth by disruption of disordered protein-protein interactions". W Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-3411.
Pełny tekst źródłaAl Balushi, Ahmed A., i Reuven Gordon. "Real-Time Dynamics of Single Protein-Small Molecule Interactions with Label-Free, Free-Solution Double-Nanohole Optical Trapping". W Frontiers in Optics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/fio.2014.fth1e.7.
Pełny tekst źródłaHuang, Cindy, Vivian Zhang, Ning Deng, Irene Yuan, Linda Pullan, C. Glenn Begley i Ping Cao. "Abstract P098: A chemoproteomic platform for identifying small-molecule modulators of protein-protein interactions, discovering new cancer targets, and revealing previously unknown targets for well-known drugs". W Abstracts: AACR-NCI-EORTC Virtual International Conference on Molecular Targets and Cancer Therapeutics; October 7-10, 2021. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1535-7163.targ-21-p098.
Pełny tekst źródłaTavousi, Pouya, Morad Behandish, Kazem Kazerounian i Horea T. Ilieş. "An Improved Free Energy Formulation and Implementation for Kinetostatic Protein Folding Simulation". W ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12671.
Pełny tekst źródłaLiu, Yuanjie, Jeremy W. Prokop, Hongzhuang Peng i Frank J. Rauscher. "Abstract 1061: High resolution DNA recognition by the Snail zinc finger protein: Testing of a molecular dynamics based model defines the atomic level interactions required for high affinity binding, E-box specificity and reveals potential strategies for small molecule control of EMT transcriptional programs". W Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1061.
Pełny tekst źródłaJewel, Yead, Prashanta Dutta i Jin Liu. "Coarse-Grained Molecular Dynamics Simulations of Sugar Transport Across Lactose Permease". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52337.
Pełny tekst źródłaRaporty organizacyjne na temat "Protein-small molecule interactions"
Chamovitz, Daniel A., i Zhenbiao Yang. Chemical Genetics of the COP9 Signalosome: Identification of Novel Regulators of Plant Development. United States Department of Agriculture, styczeń 2011. http://dx.doi.org/10.32747/2011.7699844.bard.
Pełny tekst źródłaMcClure, Michael A., Yitzhak Spiegel, David M. Bird, R. Salomon i R. H. C. Curtis. Functional Analysis of Root-Knot Nematode Surface Coat Proteins to Develop Rational Targets for Plantibodies. United States Department of Agriculture, październik 2001. http://dx.doi.org/10.32747/2001.7575284.bard.
Pełny tekst źródłaHorwitz, Benjamin, i Barbara Gillian Turgeon. Secondary Metabolites, Stress, and Signaling: Roles and Regulation of Peptides Produced by Non-ribosomal Peptide Synthetases. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696522.bard.
Pełny tekst źródłaDickman, Martin B., i Oded Yarden. Characterization of the chorismate mutase effector (SsCm1) from Sclerotinia sclerotiorum. United States Department of Agriculture, styczeń 2015. http://dx.doi.org/10.32747/2015.7600027.bard.
Pełny tekst źródła