Artykuły w czasopismach na temat „Protein language models”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Protein language models”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Tang, Lin. "Protein language models using convolutions". Nature Methods 21, nr 4 (kwiecień 2024): 550. http://dx.doi.org/10.1038/s41592-024-02252-3.
Pełny tekst źródłaAli, Sarwan, Prakash Chourasia i Murray Patterson. "When Protein Structure Embedding Meets Large Language Models". Genes 15, nr 1 (23.12.2023): 25. http://dx.doi.org/10.3390/genes15010025.
Pełny tekst źródłaFerruz, Noelia, i Birte Höcker. "Controllable protein design with language models". Nature Machine Intelligence 4, nr 6 (czerwiec 2022): 521–32. http://dx.doi.org/10.1038/s42256-022-00499-z.
Pełny tekst źródłaLi, Xiang, Zhuoyu Wei, Yueran Hu i Xiaolei Zhu. "GraphNABP: Identifying nucleic acid-binding proteins with protein graphs and protein language models". International Journal of Biological Macromolecules 280 (listopad 2024): 135599. http://dx.doi.org/10.1016/j.ijbiomac.2024.135599.
Pełny tekst źródłaSingh, Arunima. "Protein language models guide directed antibody evolution". Nature Methods 20, nr 6 (czerwiec 2023): 785. http://dx.doi.org/10.1038/s41592-023-01924-w.
Pełny tekst źródłaTran, Chau, Siddharth Khadkikar i Aleksey Porollo. "Survey of Protein Sequence Embedding Models". International Journal of Molecular Sciences 24, nr 4 (14.02.2023): 3775. http://dx.doi.org/10.3390/ijms24043775.
Pełny tekst źródłaPokharel, Suresh, Pawel Pratyush, Hamid D. Ismail, Junfeng Ma i Dukka B. KC. "Integrating Embeddings from Multiple Protein Language Models to Improve Protein O-GlcNAc Site Prediction". International Journal of Molecular Sciences 24, nr 21 (6.11.2023): 16000. http://dx.doi.org/10.3390/ijms242116000.
Pełny tekst źródłaWang, Wenkai, Zhenling Peng i Jianyi Yang. "Single-sequence protein structure prediction using supervised transformer protein language models". Nature Computational Science 2, nr 12 (19.12.2022): 804–14. http://dx.doi.org/10.1038/s43588-022-00373-3.
Pełny tekst źródłaPang, Yihe, i Bin Liu. "IDP-LM: Prediction of protein intrinsic disorder and disorder functions based on language models". PLOS Computational Biology 19, nr 11 (22.11.2023): e1011657. http://dx.doi.org/10.1371/journal.pcbi.1011657.
Pełny tekst źródłaWeber, Leon, Kirsten Thobe, Oscar Arturo Migueles Lozano, Jana Wolf i Ulf Leser. "PEDL: extracting protein–protein associations using deep language models and distant supervision". Bioinformatics 36, Supplement_1 (1.07.2020): i490—i498. http://dx.doi.org/10.1093/bioinformatics/btaa430.
Pełny tekst źródłaWang, Yang. "Enhanced protein function prediction by fusion embedding based on protein language models". Highlights in Science, Engineering and Technology 66 (20.09.2023): 177–84. http://dx.doi.org/10.54097/hset.v66i.11697.
Pełny tekst źródłaSun, Yuanfei, i Yang Shen. "Variant effect prediction using structure-informed protein language models". Biophysical Journal 122, nr 3 (luty 2023): 473a. http://dx.doi.org/10.1016/j.bpj.2022.11.2537.
Pełny tekst źródłaQu, Yang, Zitong Niu, Qiaojiao Ding, Taowa Zhao, Tong Kong, Bing Bai, Jianwei Ma, Yitian Zhao i Jianping Zheng. "Ensemble Learning with Supervised Methods Based on Large-Scale Protein Language Models for Protein Mutation Effects Prediction". International Journal of Molecular Sciences 24, nr 22 (18.11.2023): 16496. http://dx.doi.org/10.3390/ijms242216496.
Pełny tekst źródłaThumuluri, Vineet, Hannah-Marie Martiny, Jose J. Almagro Armenteros, Jesper Salomon, Henrik Nielsen i Alexander Rosenberg Johansen. "NetSolP: predicting protein solubility in Escherichia coli using language models". Bioinformatics 38, nr 4 (27.11.2021): 941–46. http://dx.doi.org/10.1093/bioinformatics/btab801.
Pełny tekst źródłaDeutschmann, Nicolas, Aurelien Pelissier, Anna Weber, Shuaijun Gao, Jasmina Bogojeska i María Rodríguez Martínez. "Do domain-specific protein language models outperform general models on immunology-related tasks?" ImmunoInformatics 14 (czerwiec 2024): 100036. http://dx.doi.org/10.1016/j.immuno.2024.100036.
Pełny tekst źródłaWang, Bo, i Wenjin Li. "Advances in the Application of Protein Language Modeling for Nucleic Acid Protein Binding Site Prediction". Genes 15, nr 8 (18.08.2024): 1090. http://dx.doi.org/10.3390/genes15081090.
Pełny tekst źródłaBhat, Suhaas, Garyk Brixi, Kalyan Palepu, Lauren Hong, Vivian Yudistyra, Tianlai Chen, Sophia Vincoff, Lin Zhao i Pranam Chatterjee. "Abstract C118: Design of programmable peptide-guided oncoprotein degraders via generative language models". Molecular Cancer Therapeutics 22, nr 12_Supplement (1.12.2023): C118. http://dx.doi.org/10.1158/1535-7163.targ-23-c118.
Pełny tekst źródłaMardikoraem, Mehrsa, i Daniel Woldring. "Protein Fitness Prediction Is Impacted by the Interplay of Language Models, Ensemble Learning, and Sampling Methods". Pharmaceutics 15, nr 5 (25.04.2023): 1337. http://dx.doi.org/10.3390/pharmaceutics15051337.
Pełny tekst źródłaNana Teukam, Yves Gaetan, Loïc Kwate Dassi, Matteo Manica, Daniel Probst, Philippe Schwaller i Teodoro Laino. "Language models can identify enzymatic binding sites in protein sequences". Computational and Structural Biotechnology Journal 23 (grudzień 2024): 1929–37. http://dx.doi.org/10.1016/j.csbj.2024.04.012.
Pełny tekst źródłaYadalam, Pradeep kumar, Ramya Ramadoss, Pradeep kumar R i Jishnu Krishna Kumar. "Pre-Trained Language Models Based Sequence Prediction of Wnt-Sclerostin Protein Sequences in Alveolar Bone Formation". Journal of Pioneering Medical Science 12, nr 3 (31.12.2023): 55–60. http://dx.doi.org/10.61091/jpms202312311.
Pełny tekst źródłaWang, Yan, Huiting Sun, Nan Sheng, Kai He, Wenjv Hou, Ziqi Zhao, Qixing Yang i Lan Huang. "ESMSec: Prediction of Secreted Proteins in Human Body Fluids Using Protein Language Models and Attention". International Journal of Molecular Sciences 25, nr 12 (9.06.2024): 6371. http://dx.doi.org/10.3390/ijms25126371.
Pełny tekst źródłaZhu, Yi-Heng, Chengxin Zhang, Dong-Jun Yu i Yang Zhang. "Integrating unsupervised language model with triplet neural networks for protein gene ontology prediction". PLOS Computational Biology 18, nr 12 (22.12.2022): e1010793. http://dx.doi.org/10.1371/journal.pcbi.1010793.
Pełny tekst źródłaLin, Zeming, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin i in. "Evolutionary-scale prediction of atomic-level protein structure with a language model". Science 379, nr 6637 (17.03.2023): 1123–30. http://dx.doi.org/10.1126/science.ade2574.
Pełny tekst źródłaStrodthoff, Nils, Patrick Wagner, Markus Wenzel i Wojciech Samek. "UDSMProt: universal deep sequence models for protein classification". Bioinformatics 36, nr 8 (8.01.2020): 2401–9. http://dx.doi.org/10.1093/bioinformatics/btaa003.
Pełny tekst źródłaGonzales, Mark Edward M., Jennifer C. Ureta i Anish M. S. Shrestha. "Protein embeddings improve phage-host interaction prediction". PLOS ONE 18, nr 7 (24.07.2023): e0289030. http://dx.doi.org/10.1371/journal.pone.0289030.
Pełny tekst źródłaBecker, Felix, i Mario Stanke. "learnMSA2: deep protein multiple alignments with large language and hidden Markov models". Bioinformatics 40, Supplement_2 (1.09.2024): ii79—ii86. http://dx.doi.org/10.1093/bioinformatics/btae381.
Pełny tekst źródłaOuteiral, Carlos, i Charlotte M. Deane. "Codon language embeddings provide strong signals for use in protein engineering". Nature Machine Intelligence 6, nr 2 (23.02.2024): 170–79. http://dx.doi.org/10.1038/s42256-024-00791-0.
Pełny tekst źródłaMedina-Ortiz, David, Seba Contreras, Diego Fernández, Nicole Soto-García, Iván Moya, Gabriel Cabas-Mora i Álvaro Olivera-Nappa. "Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides". International Journal of Molecular Sciences 25, nr 16 (14.08.2024): 8851. http://dx.doi.org/10.3390/ijms25168851.
Pełny tekst źródłaChu, Hongkang, i Taigang Liu. "Comprehensive Research on Druggable Proteins: From PSSM to Pre-Trained Language Models". International Journal of Molecular Sciences 25, nr 8 (19.04.2024): 4507. http://dx.doi.org/10.3390/ijms25084507.
Pełny tekst źródłaPang, Yihe, i Bin Liu. "DMFpred: Predicting protein disorder molecular functions based on protein cubic language model". PLOS Computational Biology 18, nr 10 (31.10.2022): e1010668. http://dx.doi.org/10.1371/journal.pcbi.1010668.
Pełny tekst źródłaValentini, Giorgio, Dario Malchiodi, Jessica Gliozzo, Marco Mesiti, Mauricio Soto-Gomez, Alberto Cabri, Justin Reese, Elena Casiraghi i Peter N. Robinson. "The promises of large language models for protein design and modeling". Frontiers in Bioinformatics 3 (23.11.2023). http://dx.doi.org/10.3389/fbinf.2023.1304099.
Pełny tekst źródłaAvraham, Orly, Tomer Tsaban, Ziv Ben-Aharon, Linoy Tsaban i Ora Schueler-Furman. "Protein language models can capture protein quaternary state". BMC Bioinformatics 24, nr 1 (14.11.2023). http://dx.doi.org/10.1186/s12859-023-05549-w.
Pełny tekst źródłaBoshar, Sam, Evan Trop, Bernardo P. de Almeida, Liviu Copoiu i Thomas Pierrot. "Are Genomic Language Models All You Need? Exploring Genomic Language Models on Protein Downstream Tasks". Bioinformatics, 30.08.2024. http://dx.doi.org/10.1093/bioinformatics/btae529.
Pełny tekst źródłaAn, Jingmin, i Xiaogang Weng. "Collectively encoding protein properties enriches protein language models". BMC Bioinformatics 23, nr 1 (8.11.2022). http://dx.doi.org/10.1186/s12859-022-05031-z.
Pełny tekst źródłaMcWhite, Claire Darnell, Isabel Armour-Garb i Mona Singh. "Leveraging protein language models for accurate multiple sequence alignments". Genome Research, 6.07.2023, gr.277675.123. http://dx.doi.org/10.1101/gr.277675.123.
Pełny tekst źródłaJing, Xiaoyang, Fandi Wu, Xiao Luo i Jinbo Xu. "Single-sequence protein structure prediction by integrating protein language models". Proceedings of the National Academy of Sciences 121, nr 13 (20.03.2024). http://dx.doi.org/10.1073/pnas.2308788121.
Pełny tekst źródłaVitale, Rosario, Leandro A. Bugnon, Emilio Luis Fenoy, Diego H. Milone i Georgina Stegmayer. "Evaluating large language models for annotating proteins". Briefings in Bioinformatics 25, nr 3 (27.03.2024). http://dx.doi.org/10.1093/bib/bbae177.
Pełny tekst źródłaLin, Peicong, Huanyu Tao, Hao Li i Sheng-You Huang. "Protein–protein contact prediction by geometric triangle-aware protein language models". Nature Machine Intelligence, 19.10.2023. http://dx.doi.org/10.1038/s42256-023-00741-2.
Pełny tekst źródłaHaselbeck, Florian, Maura John, Yuqi Zhang, Jonathan Pirnay, Juan Pablo Fuenzalida-Werner, Rubén D. Costa i Dominik G. Grimm. "Superior protein thermophilicity prediction with protein language model embeddings". NAR Genomics and Bioinformatics 5, nr 4 (11.10.2023). http://dx.doi.org/10.1093/nargab/lqad087.
Pełny tekst źródłaIeremie, Ioan, Rob M. Ewing i Mahesan Niranjan. "Protein language models meet reduced amino acid alphabets". Bioinformatics, 3.02.2024. http://dx.doi.org/10.1093/bioinformatics/btae061.
Pełny tekst źródłaPudžiuvelytė, Ieva, Kliment Olechnovič, Egle Godliauskaite, Kristupas Sermokas, Tomas Urbaitis, Giedrius Gasiunas i Darius Kazlauskas. "TemStaPro: protein thermostability prediction using sequence representations from protein language models". Bioinformatics, 20.03.2024. http://dx.doi.org/10.1093/bioinformatics/btae157.
Pełny tekst źródłaKabir, Anowarul, Asher Moldwin, Yana Bromberg i Amarda Shehu. "In the Twilight Zone of Protein Sequence Homology: Do Protein Language Models Learn Protein Structure?" Bioinformatics Advances, 17.08.2024. http://dx.doi.org/10.1093/bioadv/vbae119.
Pełny tekst źródłaChen, Bo, Ziwei Xie, Jiezhong Qiu, Zhaofeng Ye, Jinbo Xu i Jie Tang. "Improved the heterodimer protein complex prediction with protein language models". Briefings in Bioinformatics, 16.06.2023. http://dx.doi.org/10.1093/bib/bbad221.
Pełny tekst źródłaTang Tian-Yi, Xiong Yi-Ming, Zhang Rui-Ge, Zhang Jian, Li Wen-Fei, Wang Jun i Wang Wei. "Progress in Protein Pre-training Models Integrated with Structural Knowledge". Acta Physica Sinica, 2024, 0. http://dx.doi.org/10.7498/aps.73.20240811.
Pełny tekst źródłaLivesey, Benjamin J., i Joseph A. Marsh. "Advancing variant effect prediction using protein language models". Nature Genetics, 10.08.2023. http://dx.doi.org/10.1038/s41588-023-01470-3.
Pełny tekst źródłaNijkamp, Erik, Jeffrey A. Ruffolo, Eli N. Weinstein, Nikhil Naik i Ali Madani. "ProGen2: Exploring the boundaries of protein language models". Cell Systems, październik 2023. http://dx.doi.org/10.1016/j.cels.2023.10.002.
Pełny tekst źródłaMarquet, Céline, Michael Heinzinger, Tobias Olenyi, Christian Dallago, Kyra Erckert, Michael Bernhofer, Dmitrii Nechaev i Burkhard Rost. "Embeddings from protein language models predict conservation and variant effects". Human Genetics, 30.12.2021. http://dx.doi.org/10.1007/s00439-021-02411-y.
Pełny tekst źródłaSi, Yunda, i Chengfei Yan. "Improved inter-protein contact prediction using dimensional hybrid residual networks and protein language models". Briefings in Bioinformatics, 9.02.2023. http://dx.doi.org/10.1093/bib/bbad039.
Pełny tekst źródłaHarrigan, William L., Barbra D. Ferrell, K. Eric Wommack, Shawn W. Polson, Zachary D. Schreiber i Mahdi Belcaid. "Improvements in viral gene annotation using large language models and soft alignments". BMC Bioinformatics 25, nr 1 (25.04.2024). http://dx.doi.org/10.1186/s12859-024-05779-6.
Pełny tekst źródłaHie, Brian L., Kevin K. Yang i Peter S. Kim. "Evolutionary velocity with protein language models predicts evolutionary dynamics of diverse proteins". Cell Systems, luty 2022. http://dx.doi.org/10.1016/j.cels.2022.01.003.
Pełny tekst źródła