Gotowa bibliografia na temat „Protein Dynamics - Confocal Microscopy”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Protein Dynamics - Confocal Microscopy”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Protein Dynamics - Confocal Microscopy"
Volkov, I. A., N. V. Frigo, L. F. Znamenskaya i O. R. Katunina. "Application of Confocal Laser Scanning Microscopy in Biology and Medicine". Vestnik dermatologii i venerologii 90, nr 1 (24.02.2014): 17–24. http://dx.doi.org/10.25208/0042-4609-2014-90-1-17-24.
Pełny tekst źródłaEggeling, Christian. "Super-resolution optical microscopy of lipid plasma membrane dynamics". Essays in Biochemistry 57 (6.02.2015): 69–80. http://dx.doi.org/10.1042/bse0570069.
Pełny tekst źródłaWANG, XIAO-PING, HUAI-NA YU i TONG-SHENG CHEN. "QUANTITATIVE FRET MEASUREMENT BASED ON CONFOCAL MICROSCOPY IMAGING AND PARTIAL ACCEPTOR PHOTOBLEACHING". Journal of Innovative Optical Health Sciences 05, nr 03 (lipiec 2012): 1250015. http://dx.doi.org/10.1142/s1793545812500150.
Pełny tekst źródłaWüstner, Daniel. "Dynamic Mode Decomposition of Fluorescence Loss in Photobleaching Microscopy Data for Model-Free Analysis of Protein Transport and Aggregation in Living Cells". Sensors 22, nr 13 (23.06.2022): 4731. http://dx.doi.org/10.3390/s22134731.
Pełny tekst źródłaYang, Kun, Shu Bai i Yan Sun. "Protein adsorption dynamics in cation-exchange chromatography quantitatively studied by confocal laser scanning microscopy". Chemical Engineering Science 63, nr 16 (sierpień 2008): 4045–54. http://dx.doi.org/10.1016/j.ces.2008.05.013.
Pełny tekst źródłaOlmsted, J. B., K. R. Olson, M. L. Gonzalez-Garay i F. Cabral. "Green fluorescent protein: Use of GFP-chimeras in the analysis of microtubule-associated protein 4 domains and microtubule dynamics". Proceedings, annual meeting, Electron Microscopy Society of America 54 (11.08.1996): 888–89. http://dx.doi.org/10.1017/s0424820100166907.
Pełny tekst źródłaWaterman-Storer, C. M., i W. C. Salmon. "Fluorescent Speckle Microscopy in Studies of Cytoskeletal Dynamics During Cell Motility". Microscopy and Microanalysis 7, S2 (sierpień 2001): 6–7. http://dx.doi.org/10.1017/s1431927600026106.
Pełny tekst źródłaChiodi, I., M. Biggiogera, M. Denegri, M. Corioni, F. Weighardt, F. Cobianchi, S. Riva i G. Biamonti. "Structure and dynamics of hnRNP-labelled nuclear bodies induced by stress treatments". Journal of Cell Science 113, nr 22 (15.11.2000): 4043–53. http://dx.doi.org/10.1242/jcs.113.22.4043.
Pełny tekst źródłaAymerich, María S., J. López-Azcárate, J. Bonaventura, G. Navarro, D. Fernández-Suárez, V. Casadó, F. Mayor i in. "Real-Time G-Protein-Coupled Receptor Imaging to Understand and Quantify Receptor Dynamics". Scientific World JOURNAL 11 (2011): 1995–2010. http://dx.doi.org/10.1100/2011/690858.
Pełny tekst źródłaWilkins, Ngozi A., Brian Storrie i Jeffrey A. Kamykowski. "Characterization of Platelet Alpha-Granule Dynamics". Blood 116, nr 21 (19.11.2010): 327. http://dx.doi.org/10.1182/blood.v116.21.327.327.
Pełny tekst źródłaRozprawy doktorskie na temat "Protein Dynamics - Confocal Microscopy"
Nilufar, Rahimova. "Real-time dynamics of IκBαdegradation studied with Kusabira-Orange 2 fusion proteins". 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/217147.
Pełny tekst źródłaGösch, Michael. "Microfluidic analysis and parallel confocal detection of single molecules /". Stockholm, 2003. http://diss.kib.ki.se/2003/91-7349-663-4/.
Pełny tekst źródłaPiguet, Joachim. "Advanced Fluorescence Microscopy to Study Plasma Membrane Protein Dynamics". Doctoral thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-178147.
Pełny tekst źródłaQC 20151217
Elmlund, Hans. "Protein structure dynamics and interplay : by single-particle electron microscopy". Doctoral thesis, Stockholm : Teknik och hälsa, Technology and Health, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4669.
Pełny tekst źródłaGuo, Qing. "Single Molecule Optical Magnetic Tweezers Microscopy Studies of Protein Dynamics". Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1435334948.
Pełny tekst źródłaSCIPIONI, LORENZO. "Local image correlation methods for the characterization of subcellular structure and dynamics by confocal and super-resolution microscopy". Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/929279.
Pełny tekst źródłaVallejo, Rodriguez Johana. "Compartmentation of glycolysis to a plasma membrane domain : role of caveolin-1 as a scaffolding protein for phosphofructokinase /". Free to MU Campus, others may purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3137759.
Pełny tekst źródłaLjunglöf, Anders. "Direct observation of biomolecule adsorption and spatial distribution of functional groups in chromatographic adsorbent particles". Doctoral thesis, Uppsala University, Surface Biotechnology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1602.
Pełny tekst źródłaConfocal microscopy has been used as a tool for studying adsorption of biomolecules to individual chromatographic adsorbent particles. By coupling a fluorescent dye to protein molecules, their penetration into single adsorbent particles could be observed visually at different times during batch uptake. By relating the relative fluorescence intensity obtained at different times to the value at equilibrium, the degree of saturation versus time could be constructed. The use of two different fluorescent dyes for protein labeling and two independent detectors, allowed direct observation of a two-component adsorption process. The confocal technique was also applied for visualization of nucleic acids. Plasmid DNA and RNA were visualized with fluorescent probes that binds to double stranded DNA and RNA respectively. Confocal measurements following single component adsorption to ion exchange particles, revealed an interesting phenomenon. Under certain experimental conditions, development of "inner radial concentration rings" (i.e. adsorbed phase concentrations that are higher at certain radial positions within the particle) were observed. Some examples are given that show how such concentration rings are formed within a particle.
Methods were also developed for measurement of the spatial distribution of immobilized functional groups. Confocal microscopy was used to investigate the immobilization of trypsin on porous glycidyl methacrylate beads. Artefacts relating to optical length differences could be reduced by use of "contrast matching". Confocal microscopy and confocal micro-Raman spectroscopy, were used to analyze the spatial distribution of IgG antibodies immobilized on BrCN-activated agarose beads. Both these measurement methods indicate an even ligand distribution. Finally, confocal Raman and fluorescence spectroscopy was applied for measurement of the spatial distribution of iminodiacetic- and sulphopropyl groups, using Nd3+ ions as fluorescent probes. Comparison of different microscope objectives showed that an immersion objective should be used for measurement of wet adsorbent particles.
Direct experimental information from the interior of individual adsorbent particles will increase the scientific understanding of intraparticle mass transport and adsorption mechanisms, and is an essential step towards the ultimate understanding of the behaviour of chromatographic adsorbents.
des, Georges Amédée. "Regulation of tubulin dynamics by the +Tip tracking protein Mal3". Thesis, University of Cambridge, 2008. https://www.repository.cam.ac.uk/handle/1810/256531.
Pełny tekst źródłaRoy, Chowdhury Susovan. "Single-Molecule Force Manipulation and Nanoscopic Imaging of Protein Structure-Dynamics-Function Relationship". Bowling Green State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu162707900722617.
Pełny tekst źródłaKsiążki na temat "Protein Dynamics - Confocal Microscopy"
Tony, Wilson, Society of Photo-optical Instrumentation Engineers., Optical Society of America i European Physical Society, red. Confocal, multiphoton, and nonlinear microscopic imaging: 22-23 June 2003, Munich, Germany. Bellingham, Wash., USA: SPIE, 2003.
Znajdź pełny tekst źródłaSociety, European Physical. Confocal, Multiphoton, and Nonlinear Microscopic Imaging II: 12-16 June 2005, Munich, Germany (Progress in Biomedical Optics and Imaging,). SPIE-International Society for Optical Engine, 2005.
Znajdź pełny tekst źródłaAppasani, Krishnarao, i Raghu Kiran Appasani, red. Single-Molecule Science. Cambridge University Press, 2022. http://dx.doi.org/10.1017/9781108525909.
Pełny tekst źródłaCzęści książek na temat "Protein Dynamics - Confocal Microscopy"
Tillberg, Paul. "Protein-Retention Expansion Microscopy (ExM): Scalable and Convenient Super-Resolution Microscopy". W Confocal Microscopy, 147–56. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1402-0_7.
Pełny tekst źródłaAkkaya, Billur, Olena Kamenyeva, Juraj Kabat i Ryan Kissinger. "Visualizing the Dynamics of T Cell–Dendritic Cell Interactions in Intact Lymph Nodes by Multiphoton Confocal Microscopy". W Confocal Microscopy, 243–63. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1402-0_13.
Pełny tekst źródłaTan, Yan-Wen, Jeffrey A. Hanson, Jhih-Wei Chu i Haw Yang. "Confocal Single-Molecule FRET for Protein Conformational Dynamics". W Protein Dynamics, 51–62. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-658-0_3.
Pełny tekst źródłaMullineaux, Conrad W. "Localization and Mobility of Bacterial Proteins by Confocal Microscopy and Fluorescence Recovery After Photobleaching". W Protein Targeting Protocols, 3–16. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-466-7_1.
Pełny tekst źródłaShenoy, Sudha K. "Visualizing G Protein-Coupled Receptor Signalsomes Using Confocal Immunofluorescence Microscopy". W Methods in Molecular Biology, 333–42. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-160-4_20.
Pełny tekst źródłaKäs, Josef, Jochen Guck i David Humphrey. "Dynamics of Single Protein Polymers Visualized by Fluorescence Microscopy". W Modern Optics, Electronics and High Precision Techniques in Cell Biology, 101–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80370-3_6.
Pełny tekst źródłaSharma, Ved P., David Entenberg i John Condeelis. "High-Resolution Live-Cell Imaging and Time-Lapse Microscopy of Invadopodium Dynamics and Tracking Analysis". W Adhesion Protein Protocols, 343–57. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-538-5_21.
Pełny tekst źródłaLarsen, DeLaine D., Regina Wai-Yan Choy i Minjong Park. "Concurrent Imaging of Receptor Trafficking and Calcium Dynamics by Spinning Disk Confocal Microscopy". W Methods in Molecular Biology, 249–59. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6688-2_17.
Pełny tekst źródłaChang, Jerry C., i Sandra J. Rosenthal. "Quantum Dot-Based Single-Molecule Microscopy for the Study of Protein Dynamics". W Methods in Molecular Biology, 71–84. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-468-5_6.
Pełny tekst źródłaRao, Tejeshwar C., Tomasz J. Nawara i Alexa L. Mattheyses. "Live-Cell Total Internal Reflection Fluorescence (TIRF) Microscopy to Investigate Protein Internalization Dynamics". W Methods in Molecular Biology, 45–58. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2035-9_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Protein Dynamics - Confocal Microscopy"
Wijarnprecha, Khakhanang, Philipp Fuhrmann, Christopher Gregson, Matt Sillick, Sopark Sonwai i Derick Rousseau. "Temperature-dependent Microstructure and Rheology of Fat in Adipose Tissue in Pork, Beef and Lamb". W 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/urjw5726.
Pełny tekst źródłaNicolau, Dan V., Robert A. Cross, Nick Carter i Takahisa Taguchi. "Protein patterning using bilayer lithography and confocal microscopy". W Microlithography '99, redaktor Will Conley. SPIE, 1999. http://dx.doi.org/10.1117/12.350244.
Pełny tekst źródłaMarchello, Gabriele. "Analysis of protein dynamics via Deep Learning". W European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1077.
Pełny tekst źródłaNicolau, Dan V., Robert A. Cross i Takahisa Taguchi. "Protein and cell patterning using bilayer lithography and confocal microscopy". W Smart Materials and MEMS, redaktorzy Alan R. Wilson i Hiroshi Asanuma. SPIE, 2001. http://dx.doi.org/10.1117/12.424413.
Pełny tekst źródłaPeterson, Kajsa H., Michael Randen, Richard M. Hays i Karl-Eric Magnusson. "Lipid and protein distribution in epithelial cells assessed with confocal microscopy". W SPIE/IS&T 1992 Symposium on Electronic Imaging: Science and Technology, redaktorzy Raj S. Acharya, Carol J. Cogswell i Dmitry B. Goldgof. SPIE, 1992. http://dx.doi.org/10.1117/12.59609.
Pełny tekst źródłaMcCabe, Eithne M., Christopher Jordan, D. T. Fewer, John F. Donegan, S. Taniguchi, T. Hino, Kazushi Nakano, Akira Ishibashi, Petteri Uusimaa i Markus Pessa. "Confocal photoluminescense microscopy in II-VI materials: annealing and degradation dynamics". W BiOS '99 International Biomedical Optics Symposium, redaktorzy Dario Cabib, Carol J. Cogswell, Jose-Angel Conchello, Jeremy M. Lerner i Tony Wilson. SPIE, 1999. http://dx.doi.org/10.1117/12.347591.
Pełny tekst źródłaBezzerides, Vassilios J., i David E. Clapham. "Near-membrane protein dynamics revealed by evanescent field microscopy". W Second International Symposium on Fluctuations and Noise, redaktorzy Derek Abbott, Sergey M. Bezrukov, Andras Der i Angel Sanchez. SPIE, 2004. http://dx.doi.org/10.1117/12.548399.
Pełny tekst źródłaTao, Xiaodong, Oscar Azucena, Min Fu, Yi Zuo, Diana C. Chen i Joel Kubby. "Adaptive optics confocal microscopy using fluorescent protein guide-stars for brain tissue imaging". W SPIE MOEMS-MEMS, redaktorzy Scot S. Olivier, Thomas G. Bifano i Joel Kubby. SPIE, 2012. http://dx.doi.org/10.1117/12.911956.
Pełny tekst źródłaQiu, Le, Edward Vitkin, Hui Fang, Munir M. Zaman, Charlotte Andersson, Saira Salahuddin, Mark D. Modell i in. "Analyzing cell structure and dynamics with confocal light scattering and absorption spectroscopic microscopy". W Biomedical Optics (BiOS) 2007, redaktor Valery V. Tuchin. SPIE, 2007. http://dx.doi.org/10.1117/12.711694.
Pełny tekst źródłaSaknite, Inga, Michael Byrne i Eric R. Tkaczyk. "Characterization of individual cell motion in human skin capillaries by noninvasive reflectance confocal video microscopy (Conference Presentation)". W Dynamics and Fluctuations in Biomedical Photonics XVI, redaktorzy Valery V. Tuchin, Martin J. Leahy i Ruikang K. Wang. SPIE, 2019. http://dx.doi.org/10.1117/12.2510442.
Pełny tekst źródłaRaporty organizacyjne na temat "Protein Dynamics - Confocal Microscopy"
Or, Dani, Shmulik Friedman i Jeanette Norton. Physical processes affecting microbial habitats and activity in unsaturated agricultural soils. United States Department of Agriculture, październik 2002. http://dx.doi.org/10.32747/2002.7587239.bard.
Pełny tekst źródłaDroby, Samir, Michael Wisniewski, Ron Porat i Dumitru Macarisin. Role of Reactive Oxygen Species (ROS) in Tritrophic Interactions in Postharvest Biocontrol Systems. United States Department of Agriculture, grudzień 2012. http://dx.doi.org/10.32747/2012.7594390.bard.
Pełny tekst źródła