Artykuły w czasopismach na temat „Protein binding – Mathematical models”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Protein binding – Mathematical models”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Palacio-Castañeda, Valentina, Simon Dumas, Philipp Albrecht, Thijmen J. Wijgers, Stéphanie Descroix, and Wouter P. R. Verdurmen. "A Hybrid In Silico and Tumor-on-a-Chip Approach to Model Targeted Protein Behavior in 3D Microenvironments." Cancers 13, no. 10 (May 18, 2021): 2461. http://dx.doi.org/10.3390/cancers13102461.
Pełny tekst źródłaMiddendorf, Thomas R., and Richard W. Aldrich. "Structural identifiability of equilibrium ligand-binding parameters." Journal of General Physiology 149, no. 1 (December 19, 2016): 105–19. http://dx.doi.org/10.1085/jgp.201611702.
Pełny tekst źródłaPremarathna, Galkande Iresha, and Leif Ellingson. "A mathematical representation of protein binding sites using structural dispersion of atoms from principal axes for classification of binding ligands." PLOS ONE 16, no. 4 (April 8, 2021): e0244905. http://dx.doi.org/10.1371/journal.pone.0244905.
Pełny tekst źródłaRuan, Shuxiang, and Gary D. Stormo. "Inherent limitations of probabilistic models for protein-DNA binding specificity." PLOS Computational Biology 13, no. 7 (July 7, 2017): e1005638. http://dx.doi.org/10.1371/journal.pcbi.1005638.
Pełny tekst źródłaSedaghat, Ahmad R., Arthur Sherman, and Michael J. Quon. "A mathematical model of metabolic insulin signaling pathways." American Journal of Physiology-Endocrinology and Metabolism 283, no. 5 (November 1, 2002): E1084—E1101. http://dx.doi.org/10.1152/ajpendo.00571.2001.
Pełny tekst źródłaKimchi, Ofer, Carl P. Goodrich, Alexis Courbet, Agnese I. Curatolo, Nicholas B. Woodall, David Baker, and Michael P. Brenner. "Self-assembly–based posttranslational protein oscillators." Science Advances 6, no. 51 (December 2020): eabc1939. http://dx.doi.org/10.1126/sciadv.abc1939.
Pełny tekst źródłaWang, Debby D., Haoran Xie, and Hong Yan. "Proteo-chemometrics interaction fingerprints of protein–ligand complexes predict binding affinity." Bioinformatics 37, no. 17 (February 27, 2021): 2570–79. http://dx.doi.org/10.1093/bioinformatics/btab132.
Pełny tekst źródłaConradi Smith, Gregory Douglas. "Allostery in oligomeric receptor models." Mathematical Medicine and Biology: A Journal of the IMA 37, no. 3 (December 10, 2019): 313–33. http://dx.doi.org/10.1093/imammb/dqz016.
Pełny tekst źródłaJiang, Yao, Hui-Fang Liu, and Rong Liu. "Systematic comparison and prediction of the effects of missense mutations on protein-DNA and protein-RNA interactions." PLOS Computational Biology 17, no. 4 (April 19, 2021): e1008951. http://dx.doi.org/10.1371/journal.pcbi.1008951.
Pełny tekst źródłaSohrabi-Jahromi, Salma, and Johannes Söding. "Thermodynamic modeling reveals widespread multivalent binding by RNA-binding proteins." Bioinformatics 37, Supplement_1 (July 1, 2021): i308—i316. http://dx.doi.org/10.1093/bioinformatics/btab300.
Pełny tekst źródłaFreedman, Simon L., Cristian Suarez, Jonathan D. Winkelman, David R. Kovar, Gregory A. Voth, Aaron R. Dinner, and Glen M. Hocky. "Mechanical and kinetic factors drive sorting of F-actin cross-linkers on bundles." Proceedings of the National Academy of Sciences 116, no. 33 (July 25, 2019): 16192–97. http://dx.doi.org/10.1073/pnas.1820814116.
Pełny tekst źródłaCortes, Eliceo, José Mora, and Edgar Márquez. "Modelling the Anti-Methicillin-Resistant Staphylococcus Aureus (MRSA) Activity of Cannabinoids: A QSAR and Docking Study." Crystals 10, no. 8 (August 11, 2020): 692. http://dx.doi.org/10.3390/cryst10080692.
Pełny tekst źródłaDéchaud, H., H. Lejeune, M. Garoscio-Cholet, R. Mallein, and M. Pugeat. "Radioimmunoassay of testosterone not bound to sex-steroid-binding protein in plasma." Clinical Chemistry 35, no. 8 (August 1, 1989): 1609–14. http://dx.doi.org/10.1093/clinchem/35.8.1609.
Pełny tekst źródłaYamada, Naomi, William K. M. Lai, Nina Farrell, B. Franklin Pugh, and Shaun Mahony. "Characterizing protein–DNA binding event subtypes in ChIP-exo data." Bioinformatics 35, no. 6 (August 28, 2018): 903–13. http://dx.doi.org/10.1093/bioinformatics/bty703.
Pełny tekst źródłaAhmed, Asad, Bhavika Mam, and Ramanathan Sowdhamini. "DEELIG: A Deep Learning Approach to Predict Protein-Ligand Binding Affinity." Bioinformatics and Biology Insights 15 (January 2021): 117793222110303. http://dx.doi.org/10.1177/11779322211030364.
Pełny tekst źródłaMichelson, Seth. "Multidrug Resistance and Its Reversal: Mathenatical Models." Journal of Theoretical Medicine 1, no. 2 (1997): 103–15. http://dx.doi.org/10.1080/10273669708833011.
Pełny tekst źródłaErban, Radek. "From molecular dynamics to Brownian dynamics." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2167 (July 8, 2014): 20140036. http://dx.doi.org/10.1098/rspa.2014.0036.
Pełny tekst źródłaGarcea, Robert L. "Biologic Constraints on Modelling Virus Assembly." Computational and Mathematical Methods in Medicine 9, no. 3-4 (2008): 257–64. http://dx.doi.org/10.1080/17486700802168007.
Pełny tekst źródłaZhang, Linda Yu, Emilio Gallicchio, Richard A. Friesner, and Ronald M. Levy. "Solvent models for protein-ligand binding: Comparison of implicit solvent poisson and surface generalized born models with explicit solvent simulations." Journal of Computational Chemistry 22, no. 6 (2001): 591–607. http://dx.doi.org/10.1002/jcc.1031.
Pełny tekst źródłaRasmusson, R. L., J. W. Clark, W. R. Giles, E. F. Shibata, and D. L. Campbell. "A mathematical model of a bullfrog cardiac pacemaker cell." American Journal of Physiology-Heart and Circulatory Physiology 259, no. 2 (August 1, 1990): H352—H369. http://dx.doi.org/10.1152/ajpheart.1990.259.2.h352.
Pełny tekst źródłaCholewa-Waclaw, Justyna, Ruth Shah, Shaun Webb, Kashyap Chhatbar, Bernard Ramsahoye, Oliver Pusch, Miao Yu, Philip Greulich, Bartlomiej Waclaw, and Adrian P. Bird. "Quantitative modelling predicts the impact of DNA methylation on RNA polymerase II traffic." Proceedings of the National Academy of Sciences 116, no. 30 (July 9, 2019): 14995–5000. http://dx.doi.org/10.1073/pnas.1903549116.
Pełny tekst źródłaLai, Hien T. T., Do Minh Ha, Duc Manh Nguyen, and Toan T. Nguyen. "Homology modeling of mouse NLRP3 NACHT protein domain and molecular dynamics simulation of its ATP binding properties." International Journal of Modern Physics C 31, no. 03 (January 8, 2020): 2050036. http://dx.doi.org/10.1142/s0129183120500369.
Pełny tekst źródłaZhang, Fuhao, Wenbo Shi, Jian Zhang, Min Zeng, Min Li, and Lukasz Kurgan. "PROBselect: accurate prediction of protein-binding residues from proteins sequences via dynamic predictor selection." Bioinformatics 36, Supplement_2 (December 2020): i735—i744. http://dx.doi.org/10.1093/bioinformatics/btaa806.
Pełny tekst źródłaTrott, L., M. Hafezparast, and A. Madzvamuse. "A mathematical understanding of how cytoplasmic dynein walks on microtubules." Royal Society Open Science 5, no. 8 (August 2018): 171568. http://dx.doi.org/10.1098/rsos.171568.
Pełny tekst źródłaRomero-Durana, Miguel, Brian Jiménez-García, and Juan Fernández-Recio. "pyDockEneRes: per-residue decomposition of protein–protein docking energy." Bioinformatics 36, no. 7 (December 6, 2019): 2284–85. http://dx.doi.org/10.1093/bioinformatics/btz884.
Pełny tekst źródłaShi, Wentao, Jeffrey M. Lemoine, Abd-El-Monsif A. Shawky, Manali Singha, Limeng Pu, Shuangyan Yang, J. Ramanujam, and Michal Brylinski. "BionoiNet: ligand-binding site classification with off-the-shelf deep neural network." Bioinformatics 36, no. 10 (February 13, 2020): 3077–83. http://dx.doi.org/10.1093/bioinformatics/btaa094.
Pełny tekst źródłaYan, Zichao, William L. Hamilton, and Mathieu Blanchette. "Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions." Bioinformatics 36, Supplement_1 (July 1, 2020): i276—i284. http://dx.doi.org/10.1093/bioinformatics/btaa456.
Pełny tekst źródłaZhang, Jian, Sina Ghadermarzi, and Lukasz Kurgan. "Prediction of protein-binding residues: dichotomy of sequence-based methods developed using structured complexes versus disordered proteins." Bioinformatics 36, no. 18 (June 17, 2020): 4729–38. http://dx.doi.org/10.1093/bioinformatics/btaa573.
Pełny tekst źródłaSACHSE, F. B., K. G. GLÄNZEL, and G. SEEMANN. "MODELING OF PROTEIN INTERACTIONS INVOLVED IN CARDIAC TENSION DEVELOPMENT." International Journal of Bifurcation and Chaos 13, no. 12 (December 2003): 3561–78. http://dx.doi.org/10.1142/s0218127403008855.
Pełny tekst źródłaLu, Wei, Carlos Bueno, Nicholas P. Schafer, Joshua Moller, Shikai Jin, Xun Chen, Mingchen Chen, et al. "OpenAWSEM with Open3SPN2: A fast, flexible, and accessible framework for large-scale coarse-grained biomolecular simulations." PLOS Computational Biology 17, no. 2 (February 12, 2021): e1008308. http://dx.doi.org/10.1371/journal.pcbi.1008308.
Pełny tekst źródłaSantana, Charles A., Sabrina de A. Silveira, João P. A. Moraes, Sandro C. Izidoro, Raquel C. de Melo-Minardi, António J. M. Ribeiro, Jonathan D. Tyzack, Neera Borkakoti, and Janet M. Thornton. "GRaSP: a graph-based residue neighborhood strategy to predict binding sites." Bioinformatics 36, Supplement_2 (December 2020): i726—i734. http://dx.doi.org/10.1093/bioinformatics/btaa805.
Pełny tekst źródłaRubinstein, Boris Y., Henry H. Mattingly, Alexander M. Berezhkovskii, and Stanislav Y. Shvartsman. "Long-term dynamics of multisite phosphorylation." Molecular Biology of the Cell 27, no. 14 (July 15, 2016): 2331–40. http://dx.doi.org/10.1091/mbc.e16-03-0137.
Pełny tekst źródłaNorris, Noele, Naomi M. Levine, Vicente I. Fernandez, and Roman Stocker. "Mechanistic model of nutrient uptake explains dichotomy between marine oligotrophic and copiotrophic bacteria." PLOS Computational Biology 17, no. 5 (May 19, 2021): e1009023. http://dx.doi.org/10.1371/journal.pcbi.1009023.
Pełny tekst źródłaYoung, David J., Jun O. Liu, and Donald Small. "Combinatorial Approaches to Overcome Plasma Protein Inhibition of FLT3 Tyrosine Kinase Inhibitors." Blood 132, Supplement 1 (November 29, 2018): 1362. http://dx.doi.org/10.1182/blood-2018-99-118820.
Pełny tekst źródłaMullins, R. Dyche, Walter F. Stafford, and Thomas D. Pollard. "Structure, Subunit Topology, and Actin-binding Activity of the Arp2/3 Complex from Acanthamoeba." Journal of Cell Biology 136, no. 2 (January 27, 1997): 331–43. http://dx.doi.org/10.1083/jcb.136.2.331.
Pełny tekst źródłaTesei, Giulio, João M. Martins, Micha B. A. Kunze, Yong Wang, Ramon Crehuet, and Kresten Lindorff-Larsen. "DEER-PREdict: Software for efficient calculation of spin-labeling EPR and NMR data from conformational ensembles." PLOS Computational Biology 17, no. 1 (January 22, 2021): e1008551. http://dx.doi.org/10.1371/journal.pcbi.1008551.
Pełny tekst źródłaGonzález, Janneth, Angela Gálvez, Ludis Morales, George E. Barreto, Francisco Capani, Omar Sierra, and Yolima Torres. "Integrative Approach for Computationally Inferring Interactions between the Alpha and Beta Subunits of the Calcium-Activated Potassium Channel (BK): A Docking Study." Bioinformatics and Biology Insights 7 (January 2013): BBI.S10077. http://dx.doi.org/10.4137/bbi.s10077.
Pełny tekst źródłaVijayakrishnan, Swetha, Philip Callow, Margaret A. Nutley, Donna P. McGow, David Gilbert, Peter Kropholler, Alan Cooper, Olwyn Byron, and J. Gordon Lindsay. "Variation in the organization and subunit composition of the mammalian pyruvate dehydrogenase complex E2/E3BP core assembly." Biochemical Journal 437, no. 3 (July 13, 2011): 565–74. http://dx.doi.org/10.1042/bj20101784.
Pełny tekst źródłaBicknell, Brendan A., and Geoffrey J. Goodhill. "Emergence of ion channel modal gating from independent subunit kinetics." Proceedings of the National Academy of Sciences 113, no. 36 (August 22, 2016): E5288—E5297. http://dx.doi.org/10.1073/pnas.1604090113.
Pełny tekst źródłaBernard, Samuel, Branka Čajavec, Laurent Pujo-Menjouet, Michael C. Mackey, and Hanspeter Herzel. "Modelling transcriptional feedback loops: the role of Gro/TLE1 in Hes1 oscillations." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1842 (March 21, 2006): 1155–70. http://dx.doi.org/10.1098/rsta.2006.1761.
Pełny tekst źródłaJha, Amrita, and Neeru Adlakha. "Two-dimensional finite element model to study unsteady state Ca2+ diffusion in neuron involving ER LEAK and SERCA." International Journal of Biomathematics 08, no. 01 (January 2015): 1550002. http://dx.doi.org/10.1142/s1793524515500023.
Pełny tekst źródłaKapla, Jon, Ismael Rodríguez-Espigares, Flavio Ballante, Jana Selent, and Jens Carlsson. "Can molecular dynamics simulations improve the structural accuracy and virtual screening performance of GPCR models?" PLOS Computational Biology 17, no. 5 (May 13, 2021): e1008936. http://dx.doi.org/10.1371/journal.pcbi.1008936.
Pełny tekst źródłaAsif, Maor, and Yaron Orenstein. "DeepSELEX: inferring DNA-binding preferences from HT-SELEX data using multi-class CNNs." Bioinformatics 36, Supplement_2 (December 2020): i634—i642. http://dx.doi.org/10.1093/bioinformatics/btaa789.
Pełny tekst źródłaIgashov, Ilia, Kliment Olechnovič, Maria Kadukova, Česlovas Venclovas, and Sergei Grudinin. "VoroCNN: deep convolutional neural network built on 3D Voronoi tessellation of protein structures." Bioinformatics 37, no. 16 (February 23, 2021): 2332–39. http://dx.doi.org/10.1093/bioinformatics/btab118.
Pełny tekst źródłaBrown, Aidan I., and Elena F. Koslover. "Design principles for the glycoprotein quality control pathway." PLOS Computational Biology 17, no. 2 (February 1, 2021): e1008654. http://dx.doi.org/10.1371/journal.pcbi.1008654.
Pełny tekst źródłaChen, Peng, Tong Shen, Youzhi Zhang, and Bing Wang. "A Sequence-segment Neighbor Encoding Schema for Protein Hotspot Residue Prediction." Current Bioinformatics 15, no. 5 (October 14, 2020): 445–54. http://dx.doi.org/10.2174/1574893615666200106115421.
Pełny tekst źródłaLiu, Yang, Xia-hui Ouyang, Zhi-Xiong Xiao, Le Zhang, and Yang Cao. "A Review on the Methods of Peptide-MHC Binding Prediction." Current Bioinformatics 15, no. 8 (January 1, 2021): 878–88. http://dx.doi.org/10.2174/1574893615999200429122801.
Pełny tekst źródłaJiang, Hanlun, Fu Kit Sheong, Lizhe Zhu, Xin Gao, Julie Bernauer, and Xuhui Huang. "Markov State Models Reveal a Two-Step Mechanism of miRNA Loading into the Human Argonaute Protein: Selective Binding followed by Structural Re-arrangement." PLOS Computational Biology 11, no. 7 (July 16, 2015): e1004404. http://dx.doi.org/10.1371/journal.pcbi.1004404.
Pełny tekst źródłaKoide, Hiroki, Noriyuki Kodera, Shveta Bisht, Shoji Takada, and Tsuyoshi Terakawa. "Modeling of DNA binding to the condensin hinge domain using molecular dynamics simulations guided by atomic force microscopy." PLOS Computational Biology 17, no. 7 (July 30, 2021): e1009265. http://dx.doi.org/10.1371/journal.pcbi.1009265.
Pełny tekst źródłaWANG, ZHI-XIANG, and YONG DUAN. "DIRECT INTERACTION ENERGY: A COMPUTATIONAL QUANTITY FOR PARAMETERIZATION OF CONDENSED-PHASE FORCE FIELDS AND ITS APPLICATION TO HYDROGEN BONDING." Journal of Theoretical and Computational Chemistry 04, spec01 (January 2005): 689–705. http://dx.doi.org/10.1142/s0219633605001726.
Pełny tekst źródła