Gotowa bibliografia na temat „Projective Lattice”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Projective Lattice”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Projective Lattice"
de Pagter, Ben, i Anthony W. Wickstead. "Free and projective Banach lattices". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 145, nr 1 (30.01.2015): 105–43. http://dx.doi.org/10.1017/s0308210512001709.
Pełny tekst źródłaSymonds, Peter. "Relative characters for H-projective RG-lattices". Mathematical Proceedings of the Cambridge Philosophical Society 104, nr 2 (wrzesień 1988): 207–13. http://dx.doi.org/10.1017/s0305004100065397.
Pełny tekst źródłaPfeiffer, Thorsten, i Stefan E. Schmidt. "Projective mappings between projective lattice geometries". Journal of Geometry 54, nr 1-2 (listopad 1995): 105–14. http://dx.doi.org/10.1007/bf01222858.
Pełny tekst źródłaRUMP, WOLFGANG. "CHARACTERIZATION OF PROJECTIVE QUANTALES". Journal of the Australian Mathematical Society 100, nr 3 (8.01.2016): 403–20. http://dx.doi.org/10.1017/s1446788715000506.
Pełny tekst źródłaJakubík, Ján. "On projective intervals in a modular lattice". Mathematica Bohemica 117, nr 3 (1992): 293–98. http://dx.doi.org/10.21136/mb.1992.126283.
Pełny tekst źródłaUchino, K. "Arnold's Projective Plane and -Matrices". Advances in Mathematical Physics 2010 (2010): 1–9. http://dx.doi.org/10.1155/2010/956128.
Pełny tekst źródłaZhuravlev, V., i I. Tsyganivska. "Projective lattices of tiled orders". Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, nr 4 (2018): 16–19. http://dx.doi.org/10.17721/1812-5409.2018/4.2.
Pełny tekst źródłaDay, Alan. "Doubling Constructions in Lattice Theory". Canadian Journal of Mathematics 44, nr 2 (1.04.1992): 252–69. http://dx.doi.org/10.4153/cjm-1992-017-7.
Pełny tekst źródłaHirai, Hiroshi. "Uniform modular lattices and affine buildings". Advances in Geometry 20, nr 3 (28.07.2020): 375–90. http://dx.doi.org/10.1515/advgeom-2020-0007.
Pełny tekst źródłaOsofsky, Barbara L. "Projective dimension is a lattice invariant". Journal of Pure and Applied Algebra 161, nr 1-2 (lipiec 2001): 205–17. http://dx.doi.org/10.1016/s0022-4049(00)00090-6.
Pełny tekst źródłaRozprawy doktorskie na temat "Projective Lattice"
Le, Tran Bach. "On k-normality and regularity of normal projective toric varieties". Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31531.
Pełny tekst źródłaHart, A. "Magnetic monopoles and confinement in lattice gauge theory". Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337718.
Pełny tekst źródłaHickel, Tilmann. "Theory of many body effects in the Kondo lattice model projection operator method /". [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=980739764.
Pełny tekst źródłaYoon, Young-jin. "Characterizations of Some Combinatorial Geometries". Thesis, University of North Texas, 1992. https://digital.library.unt.edu/ark:/67531/metadc277894/.
Pełny tekst źródłaHickel, Tilmann. "Theory of many-body effects in the Kondo-lattice model". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2006. http://dx.doi.org/10.18452/15500.
Pełny tekst źródłaThe magnetic behaviour of various materials is due to an indirect interaction of localized magnetic moments, which is based on itinerant electrons in a conduction band. The Kondo-lattice model is an elegant approach for a quantum-mechanical description of this process. It reduces the relevant physics to an intra-atomic exchange interaction of the localized and the itinerant electrons. The aim of the present work is a detailed investigation of analytic properties of this model. Here, the interplay of two distinct types of particles, described by Fermi operators and quantum-mechanical spin operators respectively, is a major challenge of the considered model. Previous studies have focused on one of these subsystems only. Using the projection-operator method, we suggest an efficient way to describe both subsystems on the same level of approximation. An evaluation of the subsystem of itinerant electrons yields an expression for the self-energy, which describes linear and quadratic interaction effects exactly. The densities of states derived with this theory show strong correlation effects. We were able to assess results obtained with less systematic approaches and to predict new many-particle effects. The application of the projection-operator method to the subsystem of localized magnetic moments results in a detailed analysis of the RPA (random phase approximation). The dependence of magnon spectra and Curie temperatures on model parameters are investigated systematically. Previously unknown drawbacks of the RPA are revealed, which prevent the combination of these results with theories for the itinerant subsystem. Improvements beyond RPA and alternative approximations are discussed.
Addakiri, Soumia. "Développement de schémas hybrides de tvpe Lattice Boltzmann : volumes Finis pour la modélisation des transferts de chaleur et de masse en projection thermique". Limoges, 2010. https://aurore.unilim.fr/theses/nxfile/default/733f20cb-3ea7-4e5a-bb01-f3d1aad91633/blobholder:0/2010LIMO4071.pdf.
Pełny tekst źródłaIn this thesis, we formulate and implement the numerical modeling of the heat and the mass transfer by the Lattice Boltzmann method (LBM). In a first part we present the basic foundations of this numerical method. Particular attention is given to the application of this method to multidimensional diffusion problems. In a second part we treat an extension of the Lattice Boltzmann method: firstly to solve the transmission phenomena at the interface, secondly to solve a two-phase solid-liquid through the development of a coupling between the non-uniform LBM method and finite volume method
Rammal, Hadia. "Problèmes de Complémentarité aux Valeurs Propres : Théories, Algorithmes et Applications". Limoges, 2013. http://aurore.unilim.fr/theses/nxfile/default/08806eb2-33e6-4642-b821-b7218aaac0f2/blobholder:0/2013LIMO4036.pdf.
Pełny tekst źródłaThis manuscript deals with the development of mathematical methods applicable to the theoretical and numerical study of a wide class of unilateral problems. To put it more precisely, we consider the Pareto and Lorentz cones eigenvalue complementarity problems PCVP. Such problems appear in many scientific disciplines such as physics, mechanics and engineering. Firstly, we are interested to the resolution of PCVP using an adequate method, “Lattice Projection Method LPM”, leading to an efficient and effective result. The originality of this formulation in comparison with the existing literature is that it is not based on the complementarity approach. Then, our contribution is reflected in the study of the non-singularity conditions of the Jacobian matrices used in the semismooth Newton method SNM to detect solutions of such problems. Then, by using the performance profiles, we compare LPM with other solvers known in the literature. The results prove in accordance with the experimental observations and show the efficiency of LPM. Secondly, we treat the stochastic case of PCVP in the sense of Pareto and Lorentz cones. We reformulate such problem to find the zeros of a semismooth function. Furthermore, we study the non-singularity conditions of the Jacobian matrix of this function to solve such problems. Moreover, we transform the problem as a constrained minimization reformulation. Finally, we discuss the inverse Pareto eigenvalue complementarity problem PICVP. This task focuses more precisely on the resolution of PICVP where we present a new method, “Inverse Lattice Projection Method ILPM”, to solve such problems
Bookjans, Eva M. "Relative number squeezing in a Spin-1 Bose-Einstein condensate". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37148.
Pełny tekst źródłaDoan, Van Tu. "Modèles réduits pour des analyses paramètriques du flambement de structures : application à la fabrication additive". Thesis, Valenciennes, 2018. http://www.theses.fr/2018VALE0017/document.
Pełny tekst źródłaThe development of additive manufacturing allows structures with highly complex shapes to be produced. Complex lattice shapes are particularly interesting in the context of lightweight structures. However, although the use of this technology is growing in numerous engineering domains, this one is not enough matured and the correlations between the experimental data and deterministic simulations are not obvious. To take into account observed variations of behavior, multiparametric approaches are nowadays efficient solutions to tend to robust and reliable designs. The aim of this thesis is to integrate material and geometric uncertainty, experimentally quantified, in buckling analyses. To achieve this objective, different surrogate models, based on regression and correlation techniques as well as different reduced order models have been first evaluated to reduce the prohibitive computational time. The selected projections rely on modes calculated either from Proper Orthogonal Decomposition, from homotopy developments or from Taylor series expansion. Second, the proposed mathematical model is integrated in fuzzy and probabilistic analyses to estimate the evolution of the critical buckling load for lattice structures
Pai, Srikanth B. "Classical Binary Codes And Subspace Codes in a Lattice Framework". Thesis, 2015. http://etd.iisc.ernet.in/handle/2005/2708.
Pełny tekst źródłaKsiążki na temat "Projective Lattice"
Schmidt, Stefan E. Projektive Räume mit geordneter Punktmenge. Giessen: Selbstverlag des Mathematischen Instituts, 1987.
Znajdź pełny tekst źródłaSardella, Edson. Elastic properties of the Abrikosov flux line lattice for anisotropic superconductors and some applications of the projection operator method to phenomenological and exact Hamiltonian systems. Manchester: University of Manchester, 1993.
Znajdź pełny tekst źródłaPetrich, M. Categories of Algebraic Systems: Vector and Projective Spaces, Semigroups, Rings and Lattices. Springer London, Limited, 2006.
Znajdź pełny tekst źródłaHrushovski, Ehud, i François Loeser. A closer look at the stable completion. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161686.003.0005.
Pełny tekst źródłaSucci, Sauro. The Hermite–Gauss Route to LBE. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0015.
Pełny tekst źródłaCzęści książek na temat "Projective Lattice"
Faure, Claude-Alain, i Alfred Frölicher. "Fundamental Notions of Lattice Theory". W Modern Projective Geometry, 1–24. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9590-2_1.
Pełny tekst źródłaWang, Zilong, Honggang Hu, Mengce Zheng i Jiehui Nan. "Symmetric Lattice-Based PAKE from Approximate Smooth Projective Hash Function and Reconciliation Mechanism". W Communications in Computer and Information Science, 95–106. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0818-9_7.
Pełny tekst źródłaFaure, Claude-Alain, i Alfred Frölicher. "Lattices of Closed Subspaces". W Modern Projective Geometry, 301–22. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9590-2_13.
Pełny tekst źródłaFaure, Claude-Alain, i Alfred Frölicher. "Projective Geometries and Projective Lattices". W Modern Projective Geometry, 25–53. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9590-2_2.
Pełny tekst źródłaFreese, Ralph, Jaroslav Jezek i J. Nation. "Sublattices of free lattices and projective lattices". W Mathematical Surveys and Monographs, 95–134. Providence, Rhode Island: American Mathematical Society, 1995. http://dx.doi.org/10.1090/surv/042/05.
Pełny tekst źródłaBost, Jean-Benoît. "Infinite-Dimensional Vector Bundles over Smooth Projective Curves". W Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithmetic Curves, 219–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44329-0_9.
Pełny tekst źródłaKatz, Jonathan, i Vinod Vaikuntanathan. "Smooth Projective Hashing and Password-Based Authenticated Key Exchange from Lattices". W Advances in Cryptology – ASIACRYPT 2009, 636–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10366-7_37.
Pełny tekst źródłaBost, Jean-Benoît. "Countably Generated Projective Modules and Linearly Compact Tate Spaces over Dedekind Rings". W Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithmetic Curves, 77–106. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44329-0_4.
Pełny tekst źródłaBost, Jean-Benoît. "Summable Projective Systems of Hermitian Vector Bundles and Finiteness of θ-Invariants". W Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithmetic Curves, 155–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44329-0_7.
Pełny tekst źródłaHaymaker, Richard W., i Andrei Alexandru. "Connections Between Thin, Thick and Projection Vortices in SU(2) Lattice Gauge Theory". W Confinement, Topology, and Other Non-Perturbative Aspects of QCD, 197–204. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0502-9_21.
Pełny tekst źródłaStreszczenia konferencji na temat "Projective Lattice"
Solus, Liam. "Local h*-polynomials of some weighted projective spaces". W Summer Workshop on Lattice Polytopes. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811200489_0024.
Pełny tekst źródłaTran, Bach Le. "A Reider-type result for smooth projective toric surfaces". W Summer Workshop on Lattice Polytopes. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811200489_0027.
Pełny tekst źródłaPortakal, Irem. "A note on deformations and mutations of fake weighted projective planes". W Summer Workshop on Lattice Polytopes. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811200489_0022.
Pełny tekst źródłaSharpe, Conner, Carolyn Conner Seepersad, Seth Watts i Dan Tortorelli. "Design of Mechanical Metamaterials via Constrained Bayesian Optimization". W ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85270.
Pełny tekst źródłaKazemi, Hesaneh, Ashkan Vaziri i Julián Norato. "Topology Optimization of Multi-Material Lattices for Maximal Bulk Modulus". W ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97370.
Pełny tekst źródłavon Smekal, Lorenz, Dhagash B. Mehta i Andre Sternbeck. "Lattice Landau Gauge via Stereographic Projection". W VIIIth Conference Quark Confinement and the Hadron Spectrum. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.077.0048.
Pełny tekst źródłaCusatis, Gianluca, Daniele Pelessone, Andrea Mencarelli i James T. Baylot. "Simulation of Reinforced Concrete Structures Under Blast and Penetration Through Lattice Discrete Particle Modeling". W ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43744.
Pełny tekst źródłaBahabad, Alon, Noa Voloch i Ady Arie. "New Quasi Phase Matching Options by Lattice Projection". W Laser Science. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/ls.2006.pdp_fb5.
Pełny tekst źródłaXu, Jun, i Shuning Wang. "Lattice piecewise affine representations on convex projection regions". W 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9030119.
Pełny tekst źródłaBahabad, Alon, Noa Voloch i Ady Arie. "New Quasi Phase Matching Options by Lattice Projection". W Frontiers in Optics. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/fio.2006.pdp_fb5.
Pełny tekst źródła