Gotowa bibliografia na temat „Projections régulières”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Projections régulières”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Projections régulières"
Delage, Christian, i Thibault Guichard. "Des images du et dans le procès du 13 novembre 2015". French Historical Studies 46, nr 2 (1.05.2023): 213–43. http://dx.doi.org/10.1215/00161071-10350061.
Pełny tekst źródłaMoget, Émilie, i Susann Heenen-Wolff. "Analyse du fonctionnement psychique d’enfants grandissant avec un couple de femmes". Enfances, Familles, Générations, nr 23 (9.12.2015): 34–51. http://dx.doi.org/10.7202/1034199ar.
Pełny tekst źródłaKarpman, Rachel. "Bridge Graphs and Deodhar Parametrizations for Positroid Varieties". Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings, 27th..., Proceedings (1.01.2015). http://dx.doi.org/10.46298/dmtcs.2490.
Pełny tekst źródłaRozprawy doktorskie na temat "Projections régulières"
Oudrane, M'hammed. "Projections régulières, structure de Lipschitz des ensembles définissables et faisceaux de Sobolev". Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4034.
Pełny tekst źródłaIn this thesis we address questions around the metric structure of definable sets in o-minimal structures. In the first part we study regular projections in the sense of Mostowski, we prove that these projections exists only for polynomially bounded structures, we use regular projections to re perform Parusinski's proof of the existence of regular covers. In the second part of this thesis, we study Sobolev sheaves (in the sense of Lebeau). For Sobolev functions of positive integer regularity, we construct these sheaves on the definable site of a surface based on basic observations of definable domains in the plane
Li, Han-Ping. "L'étude de la règle de métrique riemannienne de Fisher-Rao et des règles de alpha-connexion affine de Chentsov-AmariL'approximation de densité par projection poursuite". Paris 11, 1986. http://www.theses.fr/1986PA112240.
Pełny tekst źródłaFirst Part. The concept of a Riemannian metric rule and the concept of an affine connexion rule are introduced in a class of statistical experiments. We prove that in the class of regular experiments, the Riemannian metric rule of Fisher-Rao and the α-affine connexion rule of Chentsov-Amari are parameter-free, isomorphism-invariant, embedding-invariant, projectively-invariant and C-continuous. We point out that in the class of discrete experiments; there is a Riemannian metric rule which verifies the isomorphism-invariance and which is not proportional to that of Fisher-Rao. We point out also that in the class of exponential experiments, there is a Riemannian metric rule which verifies embedding-invariant and which is not proportional to that of Fisher-Rao. We give an example to show that the Riemannian metric rule of Fisher-Rao is not continuous in the sens of the Le cam’s deficiency. We prove finally that in the class of separable experiments, all Riemannian metric rules verifying the embedding-invariance and C-continuity are proportional to the Riemannian metric rule of Fisher-Rao and that all affine connexion rules verifying the embedding-invariance and C-continuity are proportional to the α-affine connexion rule of Chentsov-Amari for some real α. Second Part. Certain results on the projection pursuit density approximation are obtained. The procedure (g(m)(x)) mEN for a gaussian density ϕ(µ, Σ) and the speed of convergence are determined. That g(m)(x) situate at the circle joining g(O)(x) and ϕ(µ, Σ) is showed. A comparison of several divergence measures is made
Zakaryan, Taron. "Contribution à l'analyse variationnelle : stabilité des cônes tangents et normaux et convexité des ensembles de Chebyshev". Thesis, Dijon, 2014. http://www.theses.fr/2014DIJOS073/document.
Pełny tekst źródłaThe aim of this thesis is to study the following three problems: 1) We are concerned with the behavior of normal cones and subdifferentials with respect to two types of convergence of sets and functions: Mosco and Attouch-Wets convergences. Our analysis is devoted to proximal, Fréchet, and Mordukhovich limiting normal cones and subdifferentials. The results obtained can be seen as extensions of Attouch theorem to the context of non-convex functions on locally uniformly convex Banach space. 2) For a given bornology β on a Banach space X we are interested in the validity of the following "lim inf" formula (…).Here Tβ(C; x) and Tc(C; x) denote the β-tangent cone and the Clarke tangent cone to C at x. We proved that it holds true for every closed set C ⊂ X and any x ∈ C, provided that the space X x X is ∂β-trusted. The trustworthiness includes spaces with an equivalent β-differentiable norm or more generally with a Lipschitz β-differentiable bump function. As a consequence, we show that for the Fréchet bornology, this "lim inf" formula characterizes in fact the Asplund property of X. 3) We investigate the convexity of Chebyshev sets. It is well known that in a smooth reflexive Banach space with the Kadec-Klee property every weakly closed Chebyshev subset is convex. We prove that the condition of the weak closedness can be replaced by the local weak closedness, that is, for any x ∈ C there is ∈ > 0 such that C ∩ B(x, ε) is weakly closed. We also prove that the Kadec-Klee property is not required when the Chebyshev set is represented by a finite union of closed convex sets
Raporty organizacyjne na temat "Projections régulières"
Jacques, Olivier, Joanis Marcelin i Jérôme Turcotte. Soutenabilité budgétaire du Québec et vieillissement de la population : implications pour la révision de la Loi sur la réduction de la dette. CIRANO, marzec 2023. http://dx.doi.org/10.54932/yqca4755.
Pełny tekst źródła