Gotowa bibliografia na temat „Profilometry”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Profilometry”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Profilometry"
Nikanorov, Nikolai Y., i Elizabeth G. Bobyleva. "CONTROL METHODS OF OPTICAL DETAILS WITH FREE-FORM SURFACES AND KINOFORM ELEMENTS". Interexpo GEO-Siberia 8, nr 1 (8.07.2020): 118–26. http://dx.doi.org/10.33764/2618-981x-2020-8-1-118-126.
Pełny tekst źródłaA.A., Dedkova, Kireev V. Yu. i Makhiboroda M.A. "Possibilities and limitations of the contact profilometry method for determining the height difference for monitoring topological elements and layer thickness". Nanostructures. Mathematical Physics and Modelling 20, nr 2 (2020): 23–40. http://dx.doi.org/10.31145/2224-8412-2020-20--2-23-40.
Pełny tekst źródłaMoon, Byoung Geun, Na Young Park, Young Chan Ko i Hyoung Jin Kim. "Characterization of paper surfaces by friction profilometry". BioResources 17, nr 4 (12.09.2022): 6067–78. http://dx.doi.org/10.15376/biores.17.4.6067-6078.
Pełny tekst źródłaSoto-Negro, Roberto. "Anterior Eye Profilometry-guided Scleral Contact Lens Fitting in Keratoconus". International Journal of Keratoconus and Ectatic Corneal Diseases 6, nr 2 (2017): 97–100. http://dx.doi.org/10.5005/jp-journals-10025-1150.
Pełny tekst źródłaPodbielska, Halina. "Endoscopic profilometry". Optical Engineering 30, nr 12 (1991): 1981. http://dx.doi.org/10.1117/12.56009.
Pełny tekst źródłaReid, Roberto E., Eliahu Laor, Bhupendra M. Tolia, Kenneth Donner i Selwyn Z. Freed. "Intraoperative Profilometry". Journal of Urology 133, nr 2 (luty 1985): 203–4. http://dx.doi.org/10.1016/s0022-5347(17)48881-1.
Pełny tekst źródłaŚlusarski, Łukasz. "Measurement accuracy analysis for microgeometry nanostandards with microinterferometer and stylus profilometer". Bulletin of the Military University of Technology 67, nr 4 (31.12.2018): 139–48. http://dx.doi.org/10.5604/01.3001.0012.8503.
Pełny tekst źródłaMarotta, Gianluca, Daniela Fontani, Franco Francini, David Jafrancesco, Maurizio De Lucia i Paola Sansoni. "Laser Profilometry on Micro-PTC". Energies 15, nr 14 (21.07.2022): 5293. http://dx.doi.org/10.3390/en15145293.
Pełny tekst źródłaHAYASAKI, Yoshio. "Frequency Comb Profilometry". Journal of the Japan Society for Precision Engineering 84, nr 8 (5.08.2018): 701–5. http://dx.doi.org/10.2493/jjspe.84.701.
Pełny tekst źródłaFang, Qiang, i Sunde Zheng. "Linearly coded profilometry". Applied Optics 36, nr 11 (10.04.1997): 2401. http://dx.doi.org/10.1364/ao.36.002401.
Pełny tekst źródłaRozprawy doktorskie na temat "Profilometry"
Fojtík, Tomáš. "Systém pro precizní 3D snímání spojitého povrchu nožní klenby". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220692.
Pełny tekst źródłaAumond, Bernardo Dantas 1972. "High precision profilometry". Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/46102.
Pełny tekst źródłaClark, Stephan Richard. "Optical reference profilometry". Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/289168.
Pełny tekst źródłaYang, Ho Soon. "Developments in stylus profilometry". Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342210.
Pełny tekst źródłaAumond, Bernardo Dantas 1972. "High precision stereo profilometry". Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/88892.
Pełny tekst źródłaIncludes bibliographical references (leaves 186-190).
Metrological data from sample surfaces can be obtained by using a variety of profilome try methods. Atomic Force Microscopy (AFM), which relies on contact inter-atomic forces to extract topographical images of a sample, is one such method that can be used on a wide range of surface types, with possible nanometer resolution (both vertical andlateral). However, AFM images are commonly distorted by convolution, which reduces metrological accuracy. This type of distortion is more significant when the sample surface containshigh aspect ratio features such as lines, steps or sharp edges or when probe and sample share similar characteristic dimensions. Therefore, as the size of engineered features arepushed into the micrometer and sub-micrometer range by the development of new high precision fabrication techniques, convolution distortions embedded in the images becomeincreasingly more significant. Aiming at mitigating these distortions and recovering metrology sound ness, we introduce a novel image deconvolution scheme based on the principle of stereo imaging. Multiple images of a sample, taken at different angles, allow for separation ofcon volution artifacts from true topographic data. As a result, accurate samplereconstruction and probe shape estimation can be achieved simultaneously. Additionally, shadow zones, which are areas of the sample that cannot be reached by the AFM probe, are greatly re duced. Most importantly, this technique does not require a priori probe characterizationor any sort of shape assumption. It also reduces the need for slender or sharper probes,which, on one hand, induce less convolution distortion but, on the other hand, are more prone to wear and damage, thus decreasing the overall inspection system reliability.
(cont.) This research project includes a survey of current high precision metrology tools and an in-depthanalysis of the state of the art deconvolution techniques for probe based metrology instruments. Next, the stereo imaging algorithm is introduced, simulation results presented and anerror analysis is conducted. Finally, experimental validations of the technique are carried outfor an industrial inspection application where the characteristic dimensions of the samplesare in the nanometer range. The technique was found to be robust and insensitive to probe or shape geometries. Furthermore, the same framework was deemed to be applicable to other probe based imaging techniques such as mechanical stylus profilometers and scanning tunneling microscopy.
by Bernardo Dantas Aumond.
Ph.D.
Chiu, Cheng-Jung. "Data processing in nanoscale profilometry". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36677.
Pełny tekst źródłaIncludes bibliographical references (p. 176-177).
New developments on the nanoscale are taking place rapidly in many fields. Instrumentation used to measure and understand the geometry and property of the small scale structure is therefore essential. One of the most promising devices to head the measurement science into the nanoscale is the scanning probe microscope. A prototype of a nanoscale profilometer based on the scanning probe microscope has been built in the Laboratory for Manufacturing and Productivity at MIT. A sample is placed on a precision flip stage and different sides of the sample are scanned under the SPM to acquire its separate surface topography. To reconstruct the original three dimensional profile, many techniques like digital filtering, edge identification, and image matching are investigated and implemented in the computer programs to post process the data, and with greater emphasis placed on the nanoscale application. The important programming issues are addressed, too. Finally, this system's error sources are discussed and analyzed.
by Cheng-Jung Chiu.
M.S.
Sun, Wenyang. "Profilometry with volume holographic imaging". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35631.
Pełny tekst źródłaIncludes bibliographical references (p. 127-133).
High resolution, non-contact object profile measurement (profilometry) at long working distance is important in a number of application areas, such as precise parts manufacturing, optical element grounding and polishing, adversary target identification in military, terrace profiling, etc. The Volume Holographic (VH) lens is a novel optical element which process the incident light field in a 3D fashion. It has been shown with promising applications in object profile acquisition and 3D imaging areas. In this thesis, we propose, design and implemented a number of volume holographic computational imaging systems for profilometry related applications. We show that the rich functionalities of the VH lens can be exploited to process the incident optical field. Some of the unique imaging behavior can not be easily achieved by using conventional optics. We first develop the theoretical framework for investigating the VH lens optical behavior. We concentrate on a simple design: using the VH lens as the spatial spectrum plane filter in a 4F imaging system. We derived the point spread function (PSF), the depth resolution, the diffraction field distribution of the proposed imaging system. Experimental system characterization and profilometry measurements were carried out with our setups.
(cont.) We find the resolution of the volume holographic imaging (VHI) profilometry system degrades quadratically with the increase of working distance. We addressed this problem by two approaches: 1. We discuss the effect of objective optics design on the VHI resolution. We proposed and implemented the use of appropriately designed telephoto objective optics to achieve very good resolution at long working distance. 2. We developed a maximum likelihood estimation based post-processing method to improve the depth resolution by more than 5 times. An important issue on VHI profilometry is the "slit-shaped" limited field of view (FoV). This makes measurement over the entire big object is very time consuming because scanning is necessary. Otherwise hundreds or thousands of VH lenses must be multiplexed on a single crystal to concatenate the slit FoV of each VH lens to form a wide exit window. However the multiplexing method suffers the "M/#" penalty on photon efficiency. We solved this problem by utilizing the wavelength degeneracy of the VH lens and designed a rainbow illumination VHI to expand the FoV.
(cont.) We also extended the application of VHI to hyper-spectral imaging. The experimental implementation of the hyper-spectral imaging system shows it is capable of not only reconstructing the 3D spatial profile but also restoring the spectral information of the object, both at high resolution. Finally, we conclude with some directions for the future work in this emerging field.
by Wenyang Sun.
Ph.D.
BELL, BERNARD WHITE JR. "DIGITAL HETERODYNE TOPOGRAPHY (MOIRE, CONTOURING, PROFILOMETRY)". Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187971.
Pełny tekst źródłaJohnson, Max LeGrand Jr. "Characterization of geotechnical surfaces via stylus profilometry". Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/20705.
Pełny tekst źródłaCoggrave, Charles Russell. "Temporal phase unwrapping : development and application of real-time systems for surface profile and surface displacement measurement". Thesis, Loughborough University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251061.
Pełny tekst źródłaKsiążki na temat "Profilometry"
Rubenstein, Joshua Beckh. Measurement of inert graphite anode wear in magnesium electroysers using confocal surface profilometry. Kingston, Ont: Queen's University, Dept. of Mining Engineering, 2004.
Znajdź pełny tekst źródłaClaros, German J. Performance of the analog and the digital profilometer with wheels and with non-contact transducers. Austin, Tex: The Center, 1985.
Znajdź pełny tekst źródłaPotter, J. F. The TRRL transverse profilometer for measuring wheeltrack rutting. Crowthorne: Pavement Engineering Division, Highways Group, Transport and Road Research Laboratory, 1989.
Znajdź pełny tekst źródłaPotter, J. F. The TRRL transverse profilometer for measuring wheeltrack rutting. Crowthorne, Berks: Transport and Road Research Laboratory, Highways Group, Pavement Engineering Division, 1989.
Znajdź pełny tekst źródłaNair, Sukumar K. Realistic pavement serviceability equations using the 690D Surface Dynamics Profilometer. [Austin, Tex.]: Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin, 1985.
Znajdź pełny tekst źródłaShaughnessy, Derrick. Carrier-density-wave depth profilometric measurements in semiconductor Si wafers using laser infrared photothermal radiometry. Ottawa: National Library of Canada, 2002.
Znajdź pełny tekst źródłaHoffman, Bradley R. Verification of rut depth collected with the INO Laser Rut Measurement System (LRMS). Athens: Ohio Research Institute for Transportation and the Environment, Russ College of Engineering and Technology, Ohio University, 2011.
Znajdź pełny tekst źródłaLindstrom, Tomas. Characterization of Interfaces by Elastic Light Scattering and Profilometry. Uppsala Universitet, 1999.
Znajdź pełny tekst źródłaNicolaides, Lena. Thermal wave inverse problems: Depth profilometry of hardened steels and diffraction tomography of sub-surface defects in metals. 2000.
Znajdź pełny tekst źródłaR, Severson Gary, United States. Dept. of Energy. Nevada Operations Office i Geological Survey (U.S.), red. Optical, noncontact, automated experimental techniqes for three-dimensional reconstruction of object surfaces using projection moire, stereo imaging, and phase-measuring profilometry. Denver, Colo: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Znajdź pełny tekst źródłaCzęści książek na temat "Profilometry"
Vignoli, Giancarlo. "Urethral Profilometry". W Urodynamics, 143–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33760-9_9.
Pełny tekst źródłaKrüger-Sehm, Rolf. "Stylus Profilometry". W Encyclopedia of Tribology, 3370–76. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_296.
Pełny tekst źródłaTaudt, Christopher. "Surface Profilometry". W Development and Characterization of a Dispersion-Encoded Method for Low-Coherence Interferometry, 39–88. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-35926-3_3.
Pełny tekst źródłaSansoni, G., F. Docchio, U. Minoni i L. Biancardi. "Adaptive Profilometry for Industrial Applications". W Laser Applications for Mechanical Industry, 351–64. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1990-0_23.
Pełny tekst źródłaChen, Liang-Chia. "Confocal Microscopy for Surface Profilometry". W Precision Manufacturing, 1–34. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-4912-5_3-1.
Pełny tekst źródłaChen, Liang-Chia. "Confocal Microscopy for Surface Profilometry". W Precision Manufacturing, 59–92. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-4938-5_3.
Pełny tekst źródłaDoyle, J. L., M. A. Correa i P. D. Bondurant. "Industrial Applications of Laser-Based Profilometry". W Review of Progress in Quantitative Nondestructive Evaluation, 2211–17. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0383-1_290.
Pełny tekst źródłaDirksen, D., Y. Kozlov i G. von Bally. "Cuneiform Surface Reconstruction by Optical Profilometry". W Optical Technologies in the Humanities, 257–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60872-8_38.
Pełny tekst źródłaSchroeder, P., R. Roux, J. M. Favreau, M. Perriollat i A. Bartoli. "Industrial Phase-Shifting Profilometry in Motion". W Image Analysis, 579–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38886-6_54.
Pełny tekst źródłaVersi, E. "Relevance of Urethral Pressure Profilometry To Date". W Micturition, 81–109. London: Springer London, 1990. http://dx.doi.org/10.1007/978-1-4471-1780-3_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Profilometry"
Li, Chongxiang, Anand K. Asundi i Zhong P. Fang. "Multichannel 3D profilometry". W International Symposium on Photonics and Applications, redaktorzy Anand K. Asundi, Wolfgang Osten i Vijay K. Varadan. SPIE, 2001. http://dx.doi.org/10.1117/12.447340.
Pełny tekst źródłaPavlíček, Pavel, Zhihui Duan i Mitsuo Takeda. "Spatial coherence profilometry". W SPIE Proceedings, redaktorzy Miroslav Miler, Dagmar Senderáková i Miroslav Hrabovský. SPIE, 2007. http://dx.doi.org/10.1117/12.739667.
Pełny tekst źródłaClark, Stephan, John E. Greivenkamp, Ralph M. Richard i José M. Sasián. "Optical reference profilometry". W Optical Fabrication and Testing. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/oft.2000.otub2.
Pełny tekst źródłaZhang, Song. "Comparing Hilbert transform profilometry and Fourier transform profilometry (Conference Presentation)". W Dimensional Optical Metrology and Inspection for Practical Applications VIII, redaktorzy Song Zhang i Kevin G. Harding. SPIE, 2019. http://dx.doi.org/10.1117/12.2517870.
Pełny tekst źródłaSong, Yuanhe, Hong Zhao, Wenyi Chen i Yushan Tan. "360-degree 3D profilometry". W Intelligent Systems & Advanced Manufacturing, redaktorzy Kevin G. Harding i Donald J. Svetkoff. SPIE, 1997. http://dx.doi.org/10.1117/12.294458.
Pełny tekst źródłaBarbosa, E. A., M. R. Gesualdi i M. Muramatsu. "Multi-wavelength holographic profilometry". W ICO20:Optical Information Processing, redaktorzy Yunlong Sheng, Songlin Zhuang i Yimo Zhang. SPIE, 2006. http://dx.doi.org/10.1117/12.668293.
Pełny tekst źródłaWan, Xinjun, Shulian Zhang i Zhou Ren. "Laser confocal feedback profilometry". W Optical Engineering + Applications, redaktorzy Joanna Schmit, Katherine Creath i Catherine E. Towers. SPIE, 2008. http://dx.doi.org/10.1117/12.792752.
Pełny tekst źródłaWoolford, Stuart, i Ian S. Burnett. "Multiview 3D profilometry using resonance-based decomposition and three-phase shift profilometry". W International Conference on Experimental Mechanics 2014, redaktorzy Chenggen Quan, Kemao Qian, Anand Asundi i Fook Siong Chau. SPIE, 2015. http://dx.doi.org/10.1117/12.2084949.
Pełny tekst źródłaWoolford, S., i I. S. Burnett. "A novel one shot object profilometry system using Direct Sequence Spread Spectrum profilometry". W 2013 11th IVMSP Workshop: 3D Image/Video Technologies and Applications. IEEE, 2013. http://dx.doi.org/10.1109/ivmspw.2013.6611896.
Pełny tekst źródłaSerrano-Trujillo, Alejandra, Jan L. Chaloupka i Matthew E. Anderson. "Surface Profilometry using Vortex Beams". W Frontiers in Optics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fio.2016.jth2a.198.
Pełny tekst źródłaRaporty organizacyjne na temat "Profilometry"
Barrie, Alexander C., Bryan S. Taylor, Jared M. Ekholm, Jr Hargus i William A. Calculating Sputter Rate Angular Dependence Using Optical Profilometry (Preprint). Fort Belvoir, VA: Defense Technical Information Center, lipiec 2007. http://dx.doi.org/10.21236/ada473515.
Pełny tekst źródłaCardenas-Garcia, J. F., i G. R. Severson. Optical, noncontact, automated experimental techniques for three-dimensional reconstruction of object surfaces using projection moire, stereo imaging, and phase-measuring profilometry. Office of Scientific and Technical Information (OSTI), styczeń 1996. http://dx.doi.org/10.2172/653991.
Pełny tekst źródłaHardy, R. D. SURFSCAN: Program to operate a LASER profilometer. Yucca Mountain Site Characterization Project. Office of Scientific and Technical Information (OSTI), wrzesień 1995. http://dx.doi.org/10.2172/111914.
Pełny tekst źródła