Artykuły w czasopismach na temat „PRIORITIZE GENES”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „PRIORITIZE GENES”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Gong, Lejun, Ronggen Yang, Chun Zhang, Quan Liu, Huakang Lee i Geng Yang. "RE-RANKING FOR PRIORITIZATION OF DISEASE-RELATED GENES". Biomedical Engineering: Applications, Basis and Communications 28, nr 04 (sierpień 2016): 1650027. http://dx.doi.org/10.4015/s1016237216500277.
Pełny tekst źródłaZhang, Yi, Tao Wang, Yan Wang, Kun Xia, Jinchen Li i Zhongsheng Sun. "Targeted sequencing and integrative analysis to prioritize candidate genes in neurodevelopmental disorders". Molecular Neurobiology 58, nr 8 (15.04.2021): 3863–73. http://dx.doi.org/10.1007/s12035-021-02377-y.
Pełny tekst źródłaXin, Huang, Wang Changchen, Liu Lei, Yang Meirong, Zhang Ye i Pan Bo. "The Phenolyzer Suite: Prioritizing the Candidate Genes Involved in Microtia". Annals of Otology, Rhinology & Laryngology 128, nr 6 (2.04.2019): 556–62. http://dx.doi.org/10.1177/0003489419840052.
Pełny tekst źródłaTranchevent, L. C., F. B. Capdevila, D. Nitsch, B. De Moor, P. De Causmaecker i Y. Moreau. "A guide to web tools to prioritize candidate genes". Briefings in Bioinformatics 12, nr 1 (21.03.2010): 22–32. http://dx.doi.org/10.1093/bib/bbq007.
Pełny tekst źródłaRylander, Ragnar. "Genes and Agents: How to Prioritize to Prevent Disease". Archives of Environmental Health: An International Journal 50, nr 5 (październik 1995): 333–34. http://dx.doi.org/10.1080/00039896.1995.9935963.
Pełny tekst źródłaAsefa, Nigus G., Zoha Kamali, Satyajit Pereira, Ahmad Vaez, Nomdo Jansonius, Arthur A. Bergen i Harold Snieder. "Bioinformatic Prioritization and Functional Annotation of GWAS-Based Candidate Genes for Primary Open-Angle Glaucoma". Genes 13, nr 6 (13.06.2022): 1055. http://dx.doi.org/10.3390/genes13061055.
Pełny tekst źródłaCabrera-Andrade, Alejandro, Andrés López-Cortés, Gabriela Jaramillo-Koupermann, César Paz-y-Miño, Yunierkis Pérez-Castillo, Cristian R. Munteanu, Humbert González-Díaz, Alejandro Pazos i Eduardo Tejera. "Gene Prioritization through Consensus Strategy, Enrichment Methodologies Analysis, and Networking for Osteosarcoma Pathogenesis". International Journal of Molecular Sciences 21, nr 3 (5.02.2020): 1053. http://dx.doi.org/10.3390/ijms21031053.
Pełny tekst źródłaSomepalli, Gowthami, Sarthak Sahoo, Arashdeep Singh i Sridhar Hannenhalli. "Prioritizing and characterizing functionally relevant genes across human tissues". PLOS Computational Biology 17, nr 7 (16.07.2021): e1009194. http://dx.doi.org/10.1371/journal.pcbi.1009194.
Pełny tekst źródłaMahmood, Iqra, Asif Nadeem, Masroor Ellahi Babar, Muhammad Muddassir Ali, Maryam Javed, Aisha Siddiqa, Tanveer Hussain i Muhammad Tariq Pervez. "Systematic and Integrated Analysis Approach to Prioritize Mastitis Resistant Genes". Pakistan Journal of Zoology 49, nr 1 (2016): 101–6. http://dx.doi.org/10.17582/journal.pjz/2017.49.1.101.106.
Pełny tekst źródłaOliver, Karen L., Vesna Lukic, Natalie P. Thorne, Samuel F. Berkovic, Ingrid E. Scheffer i Melanie Bahlo. "Harnessing Gene Expression Networks to Prioritize Candidate Epileptic Encephalopathy Genes". PLoS ONE 9, nr 7 (9.07.2014): e102079. http://dx.doi.org/10.1371/journal.pone.0102079.
Pełny tekst źródłaJiang, Rui. "Walking on multiple disease-gene networks to prioritize candidate genes". Journal of Molecular Cell Biology 7, nr 3 (13.02.2015): 214–30. http://dx.doi.org/10.1093/jmcb/mjv008.
Pełny tekst źródłaSu, Yongchun, Yunfei Li i Ping Ye. "Mammalian meiosis is more conserved by sex than by species: conserved co-expression networks of meiotic prophase". REPRODUCTION 142, nr 5 (listopad 2011): 675–87. http://dx.doi.org/10.1530/rep-11-0260.
Pełny tekst źródłaPerales-Patón, Javier, Tomás Di Domenico, Coral Fustero-Torre, Elena Piñeiro-Yáñez, Carlos Carretero-Puche, Héctor Tejero, Alfonso Valencia, Gonzalo Gómez-López i Fátima Al-Shahrour. "vulcanSpot: a tool to prioritize therapeutic vulnerabilities in cancer". Bioinformatics 35, nr 22 (7.06.2019): 4846–48. http://dx.doi.org/10.1093/bioinformatics/btz465.
Pełny tekst źródłaKumar, Rupesh, i Shazia Haider. "Protein network analysis to prioritize key genes in amyotrophic lateral sclerosis". IBRO Neuroscience Reports 12 (czerwiec 2022): 25–44. http://dx.doi.org/10.1016/j.ibneur.2021.12.002.
Pełny tekst źródłaVotava, James A., i Brian W. Parks. "Cross-species data integration to prioritize causal genes in lipid metabolism". Current Opinion in Lipidology 32, nr 2 (5.02.2021): 141–46. http://dx.doi.org/10.1097/mol.0000000000000742.
Pełny tekst źródłaChen, Zefu, Yu Zheng, Yongxin Yang, Yingzhao Huang, Sen Zhao, Hengqiang Zhao, Chenxi Yu i in. "PhenoApt leverages clinical expertise to prioritize candidate genes via machine learning". American Journal of Human Genetics 109, nr 2 (luty 2022): 270–81. http://dx.doi.org/10.1016/j.ajhg.2021.12.008.
Pełny tekst źródłaSchaefer, Robert J., Jean-Michel Michno, Joseph Jeffers, Owen Hoekenga, Brian Dilkes, Ivan Baxter i Chad L. Myers. "Integrating Coexpression Networks with GWAS to Prioritize Causal Genes in Maize". Plant Cell 30, nr 12 (9.11.2018): 2922–42. http://dx.doi.org/10.1105/tpc.18.00299.
Pełny tekst źródłaLin, Fan, Jue Fan i Seung Y. Rhee. "QTG-Finder: A Machine-Learning Based Algorithm To Prioritize Causal Genes of Quantitative Trait Loci in Arabidopsis and Rice". G3: Genes|Genomes|Genetics 9, nr 10 (29.07.2019): 3129–38. http://dx.doi.org/10.1534/g3.119.400319.
Pełny tekst źródłaO'Mara, Tracy A., Kaltin Ferguson, Paul Fahey, Louise Marquart, Hannah P. Yang, Jolanta Lissowska, Stephen Chanock i in. "CHEK2, MGMT, SULT1E1 and SULT1A1 Polymorphisms and Endometrial Cancer Risk". Twin Research and Human Genetics 14, nr 4 (1.08.2011): 328–32. http://dx.doi.org/10.1375/twin.14.4.328.
Pełny tekst źródłaSuratanee, Apichat, Chidchanok Chokrathok, Panita Chutimanukul, Nopphawitchayaphong Khrueasan, Teerapong Buaboocha, Supachitra Chadchawan i Kitiporn Plaimas. "Two-State Co-Expression Network Analysis to Identify Genes Related to Salt Tolerance in Thai rice". Genes 9, nr 12 (29.11.2018): 594. http://dx.doi.org/10.3390/genes9120594.
Pełny tekst źródłaRazaghi-Moghadam, Zahra, Razieh Abdollahi, Sama Goliaei i Morteza Ebrahimi. "HybridRanker: Integrating network topology and biomedical knowledge to prioritize cancer candidate genes". Journal of Biomedical Informatics 64 (grudzień 2016): 139–46. http://dx.doi.org/10.1016/j.jbi.2016.10.003.
Pełny tekst źródłaZazuli, Zulfan, Lalu Muhammad Irham, Wirawan Adikusuma i Nur Melani Sari. "Identification of Potential Treatments for Acute Lymphoblastic Leukemia through Integrated Genomic Network Analysis". Pharmaceuticals 15, nr 12 (14.12.2022): 1562. http://dx.doi.org/10.3390/ph15121562.
Pełny tekst źródłaFadaka, Adewale Oluwaseun, Ashwil Klein i Ashley Pretorius. "In silico identification of microRNAs as candidate colorectal cancer biomarkers". Tumor Biology 41, nr 11 (listopad 2019): 101042831988372. http://dx.doi.org/10.1177/1010428319883721.
Pełny tekst źródłaSrivastava, Neha, Bhartendu Nath Mishra i Prachi Srivastava. "Protein Network Analysis to Prioritize Key Genes and Pathway for Stress-Mediated Neurodegeneration". Open Bioinformatics Journal 11, nr 1 (18.10.2018): 240–51. http://dx.doi.org/10.2174/1875036201811010240.
Pełny tekst źródłaZhang, Tiejun, i Di Zhang. "Integrating omics data and protein interaction networks to prioritize driver genes in cancer". Oncotarget 8, nr 35 (22.07.2017): 58050–60. http://dx.doi.org/10.18632/oncotarget.19481.
Pełny tekst źródłaWu, Mengmeng, Wanwen Zeng, Wenqiang Liu, Hairong Lv, Ting Chen i Rui Jiang. "Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning". Methods 145 (sierpień 2018): 41–50. http://dx.doi.org/10.1016/j.ymeth.2018.06.002.
Pełny tekst źródłaHimmelstein, Daniel S., i Sergio E. Baranzini. "Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes". PLOS Computational Biology 11, nr 7 (9.07.2015): e1004259. http://dx.doi.org/10.1371/journal.pcbi.1004259.
Pełny tekst źródłaLin, Fan, Elena Z. Lazarus i Seung Y. Rhee. "QTG-Finder2: A Generalized Machine-Learning Algorithm for Prioritizing QTL Causal Genes in Plants". G3: Genes|Genomes|Genetics 10, nr 7 (19.05.2020): 2411–21. http://dx.doi.org/10.1534/g3.120.401122.
Pełny tekst źródłaChang, Ji-Wei, Yuduan Ding, Muhammad Tahir ul Qamar, Yin Shen, Junxiang Gao i Ling-Ling Chen. "A deep learning model based on sparse auto-encoder for prioritizing cancer-related genes and drug target combinations". Carcinogenesis 40, nr 5 (4.04.2019): 624–32. http://dx.doi.org/10.1093/carcin/bgz044.
Pełny tekst źródłaHartanto, Margi, Ronny V. L. Joosen, Basten L. Snoek, Leo A. J. Willems, Mark G. Sterken, Dick de Ridder, Henk W. M. Hilhorst, Wilco Ligterink i Harm Nijveen. "Network Analysis Prioritizes DEWAX and ICE1 as the Candidate Genes for Major eQTL Hotspots in Seed Germination of Arabidopsis thaliana". G3: Genes|Genomes|Genetics 10, nr 11 (22.09.2020): 4215–26. http://dx.doi.org/10.1534/g3.120.401477.
Pełny tekst źródłaMcGuirl, Melissa R., Samuel Pattillo Smith, Björn Sandstede i Sohini Ramachandran. "Detecting Shared Genetic Architecture Among Multiple Phenotypes by Hierarchical Clustering of Gene-Level Association Statistics". Genetics 215, nr 2 (3.04.2020): 511–29. http://dx.doi.org/10.1534/genetics.120.303096.
Pełny tekst źródłaBonnot, Titouan, i Dawn H. Nagel. "Time of the day prioritizes the pool of translating mRNAs in response to heat stress". Plant Cell 33, nr 7 (19.04.2021): 2164–82. http://dx.doi.org/10.1093/plcell/koab113.
Pełny tekst źródłaRazzaghdoust, Abolfazl, Shahabedin Rahmatizadeh, Bahram Mofid, Samad Muhammadnejad, Mahmoud Parvin, Peyman Mohammadi Torbati i Abbas Basiri. "Data-Driven Discovery of Molecular Targets for Antibody-Drug Conjugates in Cancer Treatment". BioMed Research International 2021 (2.01.2021): 1–9. http://dx.doi.org/10.1155/2021/2670573.
Pełny tekst źródłaShi, Xingjie, Xiaoran Chai, Yi Yang, Qing Cheng, Yuling Jiao, Haoyue Chen, Jian Huang, Can Yang i Jin Liu. "A tissue-specific collaborative mixed model for jointly analyzing multiple tissues in transcriptome-wide association studies". Nucleic Acids Research 48, nr 19 (26.09.2020): e109-e109. http://dx.doi.org/10.1093/nar/gkaa767.
Pełny tekst źródłaAlexandre, Pâmela A., Nicholas J. Hudson, Sigrid A. Lehnert, Marina R. S. Fortes, Marina Naval-Sánchez, Loan T. Nguyen, Laercio R. Porto-Neto i Antonio Reverter. "Genome-Wide Co-Expression Distributions as a Metric to Prioritize Genes of Functional Importance". Genes 11, nr 10 (20.10.2020): 1231. http://dx.doi.org/10.3390/genes11101231.
Pełny tekst źródłaZhang, Wangshu, Fengzhu Sun i Rui Jiang. "Integrating multiple protein-protein interaction networks to prioritize disease genes: a Bayesian regression approach". BMC Bioinformatics 12, Suppl 1 (2011): S11. http://dx.doi.org/10.1186/1471-2105-12-s1-s11.
Pełny tekst źródłaLiu, Yining, Jingchun Sun i Min Zhao. "Literature-based knowledgebase of pancreatic cancer gene to prioritize the key genes and pathways". Journal of Genetics and Genomics 43, nr 9 (wrzesień 2016): 569–71. http://dx.doi.org/10.1016/j.jgg.2016.04.006.
Pełny tekst źródłaZheng, Chunlei, i Rong Xu. "The Alzheimer’s comorbidity phenome: mining from a large patient database and phenome-driven genetics prediction". JAMIA Open 2, nr 1 (19.12.2018): 131–38. http://dx.doi.org/10.1093/jamiaopen/ooy050.
Pełny tekst źródłaKanduri, Chakravarthi, i Irma Järvelä. "GenRank: a R/Bioconductor package for prioritization of candidate genes". F1000Research 6 (11.04.2017): 463. http://dx.doi.org/10.12688/f1000research.11223.1.
Pełny tekst źródłaNing, Kaida, Kyle Gettler, Wei Zhang, Sok Meng Ng, B. Monica Bowen, Jeffrey Hyams, Michael C. Stephens i in. "Improved integrative framework combining association data with gene expression features to prioritize Crohn's disease genes". Human Molecular Genetics 24, nr 14 (1.05.2015): 4147–57. http://dx.doi.org/10.1093/hmg/ddv142.
Pełny tekst źródłaThibodeau, Asa, i Dong-Guk Shin. "TriPOINT: a software tool to prioritize important genes in pathways and their non-coding regulators". Bioinformatics 35, nr 15 (19.12.2018): 2686–89. http://dx.doi.org/10.1093/bioinformatics/bty998.
Pełny tekst źródłaAlmeida-Silva, Fabricio, i Thiago M. Venancio. "cageminer: an R/Bioconductor package to prioritize candidate genes by integrating GWAS and gene coexpression networks". in silico Plants, 24.08.2022. http://dx.doi.org/10.1093/insilicoplants/diac018.
Pełny tekst źródłaRuan, Peifeng, i Shuang Wang. "DiSNEP: a Disease-Specific gene Network Enhancement to improve Prioritizing candidate disease genes". Briefings in Bioinformatics, 16.10.2020. http://dx.doi.org/10.1093/bib/bbaa241.
Pełny tekst źródłaXu, Zhuoran, Luigi Marchionni i Shuang Wang. "MultiNEP: a Multi-omics Network Enhancement framework for Prioritizing disease genes and metabolites simultaneously". Bioinformatics, 22.05.2023. http://dx.doi.org/10.1093/bioinformatics/btad333.
Pełny tekst źródłaChen, Yong, Xuebing Wu i Rui Jiang. "Integrating human omics data to prioritize candidate genes". BMC Medical Genomics 6, nr 1 (grudzień 2013). http://dx.doi.org/10.1186/1755-8794-6-57.
Pełny tekst źródłaHao, Ke, Raili Ermel, Katyayani Sukhavasi, Haoxiang Cheng, Lijiang Ma, Ling Li, Letizia Amadori i in. "Integrative Prioritization of Causal Genes for Coronary Artery Disease". Circulation: Genomic and Precision Medicine 15, nr 1 (luty 2022). http://dx.doi.org/10.1161/circgen.121.003365.
Pełny tekst źródłaDutta, Tithi, Sayantan Mitra, Arpan Saha, Kausik Ganguly, Tushar Pyne i Mainak Sengupta. "A comprehensive meta-analysis and prioritization study to identify vitiligo associated coding and non-coding SNV candidates using web-based bioinformatics tools". Scientific Reports 12, nr 1 (25.08.2022). http://dx.doi.org/10.1038/s41598-022-18766-9.
Pełny tekst źródłaBuonaiuto, Silvia, Immacolata Di Biase, Valentina Aleotti, Amin Ravaei, Adriano De Marino, Gianluca Damaggio, Marco Chierici i in. "Prioritization of putatively detrimental variants in euploid miscarriages". Scientific Reports 12, nr 1 (7.02.2022). http://dx.doi.org/10.1038/s41598-022-05737-3.
Pełny tekst źródłaYepes, Sally, Margaret A. Tucker, Hela Koka, Yanzi Xiao, Kristine Jones, Aurelie Vogt, Laurie Burdette i in. "Using whole-exome sequencing and protein interaction networks to prioritize candidate genes for germline cutaneous melanoma susceptibility". Scientific Reports 10, nr 1 (14.10.2020). http://dx.doi.org/10.1038/s41598-020-74293-5.
Pełny tekst źródłaHoffmann, Markus, Nico Trummer, Leon Schwartz, Jakub Jankowski, Hye Kyung Lee, Lina-Liv Willruth, Olga Lazareva i in. "TF-Prioritizer: a Java pipeline to prioritize condition-specific transcription factors". GigaScience 12 (28.12.2022). http://dx.doi.org/10.1093/gigascience/giad026.
Pełny tekst źródła