Gotowa bibliografia na temat „Primary Visual Cortex (area V1)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Primary Visual Cortex (area V1)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Primary Visual Cortex (area V1)"
Beltramo, Riccardo, i Massimo Scanziani. "A collicular visual cortex: Neocortical space for an ancient midbrain visual structure". Science 363, nr 6422 (3.01.2019): 64–69. http://dx.doi.org/10.1126/science.aau7052.
Pełny tekst źródłaWatanabe, Takeo, Yuka Sasaki, Satoru Miyauchi, Benno Putz, Norio Fujimaki, Matthew Nielsen, Ryosuke Takino i Satoshi Miyakawa. "Attention-Regulated Activity in Human Primary Visual Cortex". Journal of Neurophysiology 79, nr 4 (1.04.1998): 2218–21. http://dx.doi.org/10.1152/jn.1998.79.4.2218.
Pełny tekst źródłaFroudarakis, Emmanouil, Paul G. Fahey, Jacob Reimer, Stelios M. Smirnakis, Edward J. Tehovnik i Andreas S. Tolias. "The Visual Cortex in Context". Annual Review of Vision Science 5, nr 1 (15.09.2019): 317–39. http://dx.doi.org/10.1146/annurev-vision-091517-034407.
Pełny tekst źródłaWhite, Brian J., Janis Y. Kan, Ron Levy, Laurent Itti i Douglas P. Munoz. "Superior colliculus encodes visual saliency before the primary visual cortex". Proceedings of the National Academy of Sciences 114, nr 35 (14.08.2017): 9451–56. http://dx.doi.org/10.1073/pnas.1701003114.
Pełny tekst źródłaSeydell-Greenwald, Anna, Xiaoying Wang, Elissa L. Newport, Yanchao Bi i Ella Striem-Amit. "Spoken language processing activates the primary visual cortex". PLOS ONE 18, nr 8 (11.08.2023): e0289671. http://dx.doi.org/10.1371/journal.pone.0289671.
Pełny tekst źródłaPereira, Catia M., Marco Aurelio M. Freire, José R. Santos, Joanilson S. Guimarães, Gabriella Dias-Florencio, Sharlene Santos, Antonio Pereira i Sidarta Ribeiro. "Non-visual exploration of novel objects increases the levels of plasticity factors in the rat primary visual cortex". PeerJ 6 (23.10.2018): e5678. http://dx.doi.org/10.7717/peerj.5678.
Pełny tekst źródłaShi, Li, Qi Ming Ye i Xiao Ke Niu. "Orientation Coding by Population of Neurons in Rats' Primary Visual Cortex". Applied Mechanics and Materials 427-429 (wrzesień 2013): 2089–93. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.2089.
Pełny tekst źródłaAndelin, Adrian K., Jaime F. Olavarria, Ione Fine, Erin N. Taber, Daniel Schwartz, Christopher D. Kroenke i Alexander A. Stevens. "The Effect of Onset Age of Visual Deprivation on Visual Cortex Surface Area Across-Species". Cerebral Cortex 29, nr 10 (18.12.2018): 4321–33. http://dx.doi.org/10.1093/cercor/bhy315.
Pełny tekst źródłaDagnino, Bruno, Marie-Alice Gariel-Mathis i Pieter R. Roelfsema. "Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1". Journal of Neurophysiology 113, nr 3 (1.02.2015): 730–39. http://dx.doi.org/10.1152/jn.00645.2014.
Pełny tekst źródłaJiang, Fei, Jian-Wen Fang, Yin-Quan Ye, Yan-Jin Tian, Xian-Jun Zeng i Yu-Lin Zhong. "Altered effective connectivity of primary visual cortex in primary angle closure glaucoma using Granger causality analysis". Acta Radiologica 61, nr 4 (7.08.2019): 508–19. http://dx.doi.org/10.1177/0284185119867644.
Pełny tekst źródłaRozprawy doktorskie na temat "Primary Visual Cortex (area V1)"
Thulin, Nilsson Linnea. "The Role of Primary Visual Cortex in Visual Awareness". Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11623.
Pełny tekst źródłaStevens, Jean-Luc Richard. "Spatiotemporal properties of evoked neural response in the primary visual cortex". Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31330.
Pełny tekst źródłaKogan, Cary. "The expression of neurofilament protein and mRNA levels in the lateral geniculate nucleus and area V1 of the developing and adult vervet monkey (Ceorcopithicus aethiops) /". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0028/MQ50807.pdf.
Pełny tekst źródłaFONTENELE, NETO Antonio Jorge. "Implementação de um protocolo experimental para estudo de propriedades de resposta visual de neurônios do córtex visual primário (V1) em ratos utilizando matrizes de eletrodos". Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/17698.
Pełny tekst źródłaMade available in DSpace on 2016-08-18T12:54:46Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Antonio Jorge Fontenele Neto.pdf: 9942923 bytes, checksum: 9de5bf466a9fc72acbc6a2a2d3a9c57c (MD5) Previous issue date: 2015-08-25
CAPEs
O córtex visual primário (V1) é a região do córtex cerebral responsável pela primeira etapa de processamento da informação visual capturada pela retina. Por ser uma das áreas corticais melhor compreendidas, V1 constitui um dos principais paradigmas de compreensão do processamento sensorial. Desde os anos 70 há uma extensa literatura que estuda propriedades de resposta de neurônios de V1, principalmente com eletrodos individuais e utilizando-se como modelo animal gatos e macacos. Tem-se conhecimento de onde partem seus principais inputs e quais estímulos fazem os neurônios dispararem (grades senoidais com determinadas frequências espaciais e temporais). Mais recentemente, com o uso de matrizes de eletrodos, se tornou possível a investigação de propriedades coletivas da atividade e codificação neurais, que não eram possíveis de serem desvendadas com eletrodos individuais. Além disso, no estado da arte tecnológico atual, o uso do rato como modelo animal permite o registro da atividade neural com os animais em comportamento livre (sem anestesia ou contenção). No entanto, pouco se sabe sobre especificidades das propriedades de resposta dos neurônios do córtex visual do rato. Este trabalho teve por objetivo desenvolver um aparato e um protocolo experimental no Laboratório de Neurociência de Sistemas e Computacional adequado para estudo das propriedades de resposta de neurônios de V1 de ratos usando matrizes de eletrodos. Finalmente, apresentamos resultados experimentais onde caracterizamos respostas de neurônios de V1 a diferentes estímulos visuais (Funções de Gabor ou Grades) seja em ruído denso ou rarefeito, variando as propriedades de frequências temporal e espacial de estimulação, densidades de estímulos, velocidade, etc. Concluímos que implementamos com sucesso a técnica experimental, que abre inúmeras perspectivas futuras de pesquisas nesta linha no Departamento de Física da Universidade Federal de Pernambuco.
The primary visual cortex (V1) is the cerebral cortex region responsible for the first processing step of the visual information captured by the retina. Being one of the most studied and well described cortical sensory areas, V1 is one of the main paradigms for the study of sensory processing. Since the 70s, there is a vast literature that studies properties of V1’s neurons, specially using single electrodes and using cats and monkeys as animal models. The anatomical conectivity of the visual pathway is known, from the retina to the lateral geniculate nucleus to V1, as well as the main visual stimulations that make V1 neurons fire (sinusoidal gratings with certain spatial and temporal frequencies). More recently, using multielectrode arrays, it became possible to study coletive properties of the activity and neural codification, that could not be unveiled with single electrodes. Furthermore with, the current state of the art in multielectrode recordings it is possible to record the neural activity in frelly behaving rats (without anesthesia or restraint). This represents an advantage in using the rat as animal model. However, little is known about specificities of the V1 neurons response properties in the rat. The aim of this work is to develop, in the Laboratório de Neurociência de Sistemas e Computacional, an apparatus and an experimental protocol suitable for the study of visual response properties of V1’s neurons in rats, using multielectrode array recordings. Finally, we present experimental results that characterize the response of V1’s neurons with different visual stimuli (Gabor or Grating Functions), either in dense os sparse noise modes, varying the spatial and temporal stimulation frequencies, stimulus density, speed, etc. We conclude that the experimental technique was implemented successfully. These results open important perspectives of future research on this field for the Departamento de Física at the Universidade Federal de Pernambuco.
Bohi, Amine. "Descripteurs de Fourier inspirés de la structure du cortex visuel primaire humain : Application à la reconnaissance de navires dans le cadre de la surveillance maritime". Thesis, Toulon, 2017. http://www.theses.fr/2017TOUL0002/document.
Pełny tekst źródłaIn this thesis, we develop a supervised object recognition method using new global image descriptors inspired by the model of the human primary visual cortex V1. Mathematically speaking, the latter is modeled as the semi-discrete roto-translation group SE (2,N)=R² x ZN semi-direct product between R² and ZN. Therefore, our technique is based on generalized and rotational Fourier descriptors defined in SE (2,N) , and which are invariant to natural geometric transformations (translations, and rotations). Furthermore, we show that such Fourier descriptors are weakly complete, in the sense that they allow to distinguish over an open and dense set of compactly supported functions in L² (SE(2,N)) , hence between real-world images. These descriptors are later used in order to feed a Support Vector Machine (SVM) classifier for object recognition purposes. We have conducted a series of experiments aiming both at evaluating and comparing the performances of our method against existing both local - and global - descriptor based state of the art techniques, using the RL, the CVL, and the ORL face databases, and the COIL-100 image database (containing various types of objects). The obtained results have demonstrated that our approach was able to compete with many existing state of the art object recognition techniques, and to outperform many others. These results have also shown that our method is robust to noise. Finally, we have applied the proposed method on vessels recognition in the framework of maritime surveillance
Cavalcante, André Borges. "Campos receptivos similares às wavelets de Haar são gerados a partir da codificação eficiente de imagens urbanas;V1". Universidade Federal do Maranhão, 2008. http://tedebc.ufma.br:8080/jspui/handle/tede/314.
Pełny tekst źródłaEfficient coding of natural images yields filters similar to the Gabor-like receptive fields of simple cells of primary visual cortex. However, natural and man-made images have different statistical proprieties. Here we show that a simple theoretical analysis of power spectra in a sparse model suggests that natural and man-made images would need specific filters for each group. Indeed, when applying sparse coding to man-made scenes, we found both Gabor and Haar wavelet-like filters. Furthermore, we found that man-made images when projected on those filters yielded smaller mean squared error than when projected on Gabor-like filters only. Thus, as natural and man-made images require different filters to be efficiently represented, these results suggest that besides Gabor, the primary visual cortex should also have cells with Haar-like receptive fields.
A codificação eficiente de imagens naturais gera filtros similares às wavelets de Gabor que relembram os campos receptivos de células simples do córtex visual primário. No entanto, imagens naturais e urbanas tem características estatísticas diferentes. Será mostrado que uma simples análise do espectro de potência em um modelo eficiente sugere que imagens naturais e urbanas requerem filtros específicos para cada grupo. De fato, aplicando codificação eficiente à imagens urbanas, encontramos filtros similares às wavelets de Gabor e de Haar. Além disso, observou-se que imagens urbanas quando projetadas nesses filtros geraram um menor erro médio quadrático do que quando projetadas somente em filtros de similares a Gabor. Desta forma, como imagens naturais e urbanas requerem filtros diferentes para serem representadas de forma eficiente, estes resultados sugerem que além de Gabor, o córtex visual primário também deve possuir células com campos receptivos similares às wavelets de Haar.
Hurdal, Monica Kimberly. "Mathematical and computer modelling of the human brain with reference to cortical magnification and dipole source localisation in the visual cortx". Thesis, Queensland University of Technology, 1998.
Znajdź pełny tekst źródłaDas, Aritra. "Effect of Stimulus Normalization and Visual Attention at multiple scales of Neural Integration". Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5986.
Pełny tekst źródłaDBT-Wellcome Trust India Alliance (Grant IA/S/18/2/504003), Tata Trusts, DBT-IISc Partnership Programme
Khaytin, Ilya. "Analysis of cortical and thalamic contributors to functional organization of primate primary visual cortex (V1)". Diss., 2008. http://etd.library.vanderbilt.edu/ETD-db/available/etd-03272008-134041/.
Pełny tekst źródłaLai, Jimmy. "Pulvinar modulates contrast response function of neurons in the primary visual cortex". Thèse, 2017. http://hdl.handle.net/1866/19712.
Pełny tekst źródłaLe pulvinar, localisé dans le thalamus postérieur, établit des connections réciproques avec la vaste majorité des aires visuelles corticales et il est ainsi dans une position stratégique afin d’influencer les processus de décodage de celles-ci. Les projections du pulvinar au cortex visuel primaire (V1) sont considérées comme étant des projections modulatrices, qui modifieraient les réponses neuronales sans toutefois changer les propriétés de base des champs récepteurs. Dans la présente étude, nous avons étudié les réponses des neurones de V1 suite à l’inactivation réversible du complexe noyau latéral postérieur (LP)-pulvinar chez le chat. Des courbes de réponse au contraste ont été générées par la présentation de réseaux ayant plusieurs niveaux de contraste pendant l’inactivation du LP-pulvinar. Aucun changement n’a été observé concernant l’orientation préférée ou la sélectivité à la direction des neurones de V1 lors de l’inactivation du pulvinar. Néanmoins, pour la majorité des cellules testées, l’amplitude de la réponse aux stimuli optimaux a été réduite. La fonction de Naka-Rushton a été appliquée aux courbes de réponse au contraste et l’analyse des effets de l’inactivation du pulvinar a montré une panoplie d’effets modulateurs : 35% des cellules ont présenté une réduction de leur réponse maximale, 11% ont eu une augmentation de leur C50, 6% ont montré une modulation de la pente et 22% des neurones ont présenté des changements dans plus d’un paramètre. Nos résultats suggèrent que le pulvinar module l’activité des neurones de V1 d’une façon dépendante du contraste et qu’il contrôle le gain des réponses des neurones des aires primaires du cortex visuel.
Książki na temat "Primary Visual Cortex (area V1)"
Chirimuuta, Mazviita, i Ian Gold. The Embedded Neuron, the Enactive Field? Redaktor John Bickle. Oxford University Press, 2009. http://dx.doi.org/10.1093/oxfordhb/9780195304787.003.0010.
Pełny tekst źródłaGori, Simone. The Rotating Tilted Lines Illusion. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199794607.003.0066.
Pełny tekst źródłaCzęści książek na temat "Primary Visual Cortex (area V1)"
Mandal, Atanendu Sekhar. "Contextual Effects in the Visual Cortex Area 1 (V1) and Camouflage Perception". W Perception and Machine Intelligence, 35–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27387-2_5.
Pełny tekst źródłaLeigh, R. John, i David S. Zee. "The Neural Basis for Conjugate Eye Movements". W The Neurology of Eye Movements, 386–473. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199969289.003.0007.
Pełny tekst źródłaCaselli, Richard J., i David T. Jones. "Cortex: Topography and Organization". W Mayo Clinic Neurology Board Review, redaktor Kelly D. Flemming, 175–78. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780197512166.003.0021.
Pełny tekst źródłaAfef, Ouelhazi, Rudy Lussiez i Molotchnikoff Stephane. "Cortical Plasticity under Ketamine: From Synapse to Map". W Sensory Nervous System - Computational Neuroimaging Investigations of Topographical Organization in Human Sensory Cortex [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104787.
Pełny tekst źródłaShibasaki, Hiroshi, i Mark Hallett. "Posture and gait". W The Neurologic Examination, 211–15. Oxford University Press, 2022. http://dx.doi.org/10.1093/med/9780197556306.003.0022.
Pełny tekst źródłaStreszczenia konferencji na temat "Primary Visual Cortex (area V1)"
Yan, Tian-yi, Feng-zhe Jin i Jing-long Wu. "Visual field representation and location of visual area V1 in human visual cortex by functional MRI". W 2009 ICME International Conference on Complex Medical Engineering - CME 2009. IEEE, 2009. http://dx.doi.org/10.1109/iccme.2009.4906645.
Pełny tekst źródłaDehsorkh, Sajjad Abdi, i Reshad Hosseini. "Predicting the neural response of primary visual cortex (v1) using deep learning approach". W 2023 28th International Computer Conference, Computer Society of Iran (CSICC). IEEE, 2023. http://dx.doi.org/10.1109/csicc58665.2023.10105321.
Pełny tekst źródłaMaunsell, John H. R. "Motion processing in visual cortex". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.tuj2.
Pełny tekst źródłaSongnian, Zhao, Zou Qi, Jin Zhen, Xiong Xiaoyun, Yao Guozheng, Yao Li i Liu Yijun. "A Computational Model that Realizes a Sparse Representation of the Primary Visual Cortex V1". W 2009 WRI World Congress on Software Engineering. IEEE, 2009. http://dx.doi.org/10.1109/wcse.2009.40.
Pełny tekst źródłaMoore, Michael J., Richard Linderman, Morgan Bishop i Robinson Pino. "A columnar primary visual cortex (V1) model emulation using a PS3 Cell-BE array". W 2010 International Joint Conference on Neural Networks (IJCNN). IEEE, 2010. http://dx.doi.org/10.1109/ijcnn.2010.5596903.
Pełny tekst źródłaBaseler, H. A., B. A. Wandell, A. B. Morland, S. R. Jones i K. H. Ruddock. "Activity in the visual cortex of a hemianope measured using fMRI". W Vision Science and its Applications. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/vsia.1997.suc.3.
Pełny tekst źródłaSchwartz, Eric L. "Recent experimental measurements of topographic-map structure in primate V-1 and presentation of a miniature space-variant active vision system". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.thv.1.
Pełny tekst źródłaMoreira da Silva, Fernando. "Color processing and human perception". W Intelligent Human Systems Integration (IHSI 2023) Integrating People and Intelligent Systems. AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1002840.
Pełny tekst źródła