Artykuły w czasopismach na temat „Predictive uncertainty quantification”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Predictive uncertainty quantification”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Cacuci, Dan Gabriel. "Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems". Energies 15, nr 17 (1.09.2022): 6379. http://dx.doi.org/10.3390/en15176379.
Pełny tekst źródłaCsillag, Daniel, Lucas Monteiro Paes, Thiago Ramos, João Vitor Romano, Rodrigo Schuller, Roberto B. Seixas, Roberto I. Oliveira i Paulo Orenstein. "AmnioML: Amniotic Fluid Segmentation and Volume Prediction with Uncertainty Quantification". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 13 (26.06.2023): 15494–502. http://dx.doi.org/10.1609/aaai.v37i13.26837.
Pełny tekst źródłaLew, Jiann-Shiun, i Jer-Nan Juang. "Robust Generalized Predictive Control with Uncertainty Quantification". Journal of Guidance, Control, and Dynamics 35, nr 3 (maj 2012): 930–37. http://dx.doi.org/10.2514/1.54510.
Pełny tekst źródłaKarimi, Hamed, i Reza Samavi. "Quantifying Deep Learning Model Uncertainty in Conformal Prediction". Proceedings of the AAAI Symposium Series 1, nr 1 (3.10.2023): 142–48. http://dx.doi.org/10.1609/aaaiss.v1i1.27492.
Pełny tekst źródłaAkitaya, Kento, i Masaatsu Aichi. "Land Subsidence Model Inversion with the Estimation of Both Model Parameter Uncertainty and Predictive Uncertainty Using an Evolutionary-Based Data Assimilation (EDA) and Ensemble Model Output Statistics (EMOS)". Water 16, nr 3 (28.01.2024): 423. http://dx.doi.org/10.3390/w16030423.
Pełny tekst źródłaSingh, Rishabh, i Jose C. Principe. "Toward a Kernel-Based Uncertainty Decomposition Framework for Data and Models". Neural Computation 33, nr 5 (13.04.2021): 1164–98. http://dx.doi.org/10.1162/neco_a_01372.
Pełny tekst źródłaChen, Peng, i Nicholas Zabaras. "Adaptive Locally Weighted Projection Regression Method for Uncertainty Quantification". Communications in Computational Physics 14, nr 4 (październik 2013): 851–78. http://dx.doi.org/10.4208/cicp.060712.281212a.
Pełny tekst źródłaOmagbon, Jericho, John Doherty, Angus Yeh, Racquel Colina, John O'Sullivan, Julian McDowell, Ruanui Nicholson, Oliver J. Maclaren i Michael O'Sullivan. "Case studies of predictive uncertainty quantification for geothermal models". Geothermics 97 (grudzień 2021): 102263. http://dx.doi.org/10.1016/j.geothermics.2021.102263.
Pełny tekst źródłaNitschke, C. T., P. Cinnella, D. Lucor i J. C. Chassaing. "Model-form and predictive uncertainty quantification in linear aeroelasticity". Journal of Fluids and Structures 73 (sierpień 2017): 137–61. http://dx.doi.org/10.1016/j.jfluidstructs.2017.05.007.
Pełny tekst źródłaMirzayeva, A., N. A. Slavinskaya, M. Abbasi, J. H. Starcke, W. Li i M. Frenklach. "Uncertainty Quantification in Chemical Modeling". Eurasian Chemico-Technological Journal 20, nr 1 (31.03.2018): 33. http://dx.doi.org/10.18321/ectj706.
Pełny tekst źródłaAlbi, Giacomo, Lorenzo Pareschi i Mattia Zanella. "Uncertainty Quantification in Control Problems for Flocking Models". Mathematical Problems in Engineering 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/850124.
Pełny tekst źródłaKumar, Bhargava, Tejaswini Kumar, Swapna Nadakuditi, Hitesh Patel i Karan Gupta. "Comparing Conformal and Quantile Regression for Uncertainty Quantification: An Empirical Investigation". International Journal of Computing and Engineering 5, nr 5 (27.05.2024): 1–8. http://dx.doi.org/10.47941/ijce.1925.
Pełny tekst źródłaGorle, Catherine. "Improving the predictive capability of building simulations using uncertainty quantification". Science and Technology for the Built Environment 28, nr 5 (28.05.2022): 575–76. http://dx.doi.org/10.1080/23744731.2022.2079261.
Pełny tekst źródłaDelottier, Hugo, John Doherty i Philip Brunner. "Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model". Geoscientific Model Development 16, nr 14 (26.07.2023): 4213–31. http://dx.doi.org/10.5194/gmd-16-4213-2023.
Pełny tekst źródłaGerber, Eric A. E., i Bruce A. Craig. "A mixed effects multinomial logistic-normal model for forecasting baseball performance". Journal of Quantitative Analysis in Sports 17, nr 3 (6.01.2021): 221–39. http://dx.doi.org/10.1515/jqas-2020-0007.
Pełny tekst źródłaWells, S., A. Plotkowski, J. Coleman, M. Rolchigo, R. Carson i M. J. M. Krane. "Uncertainty quantification for computational modelling of laser powder bed fusion". IOP Conference Series: Materials Science and Engineering 1281, nr 1 (1.05.2023): 012024. http://dx.doi.org/10.1088/1757-899x/1281/1/012024.
Pełny tekst źródłaMa, Junwei, Xiao Liu, Xiaoxu Niu, Yankun Wang, Tao Wen, Junrong Zhang i Zongxing Zou. "Forecasting of Landslide Displacement Using a Probability-Scheme Combination Ensemble Prediction Technique". International Journal of Environmental Research and Public Health 17, nr 13 (3.07.2020): 4788. http://dx.doi.org/10.3390/ijerph17134788.
Pełny tekst źródłaFeng, Jinchao, Joshua L. Lansford, Markos A. Katsoulakis i Dionisios G. Vlachos. "Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences". Science Advances 6, nr 42 (październik 2020): eabc3204. http://dx.doi.org/10.1126/sciadv.abc3204.
Pełny tekst źródłaBanerjee, Sourav. "Uncertainty Quantification Driven Predictive Multi-Scale Model for Synthesis of Mycotoxins". Computational Biology and Bioinformatics 2, nr 1 (2014): 7. http://dx.doi.org/10.11648/j.cbb.20140201.12.
Pełny tekst źródłaRiley, Matthew E., i Ramana V. Grandhi. "Quantification of model-form and predictive uncertainty for multi-physics simulation". Computers & Structures 89, nr 11-12 (czerwiec 2011): 1206–13. http://dx.doi.org/10.1016/j.compstruc.2010.10.004.
Pełny tekst źródłaZgraggen, Jannik, Gianmarco Pizza i Lilach Goren Huber. "Uncertainty Informed Anomaly Scores with Deep Learning: Robust Fault Detection with Limited Data". PHM Society European Conference 7, nr 1 (29.06.2022): 530–40. http://dx.doi.org/10.36001/phme.2022.v7i1.3342.
Pełny tekst źródłaKefalas, Marios, Bas van Stein, Mitra Baratchi, Asteris Apostolidis i Thomas Baeck. "End-to-End Pipeline for Uncertainty Quantification and Remaining Useful Life Estimation: An Application on Aircraft Engines". PHM Society European Conference 7, nr 1 (29.06.2022): 245–60. http://dx.doi.org/10.36001/phme.2022.v7i1.3317.
Pełny tekst źródłaSætrom, Jon, Joakim Hove, Jan-Arild Skjervheim i Jon Gustav Vabø. "Improved Uncertainty Quantification in the Ensemble Kalman Filter Using Statistical Model-Selection Techniques". SPE Journal 17, nr 01 (31.01.2012): 152–62. http://dx.doi.org/10.2118/145192-pa.
Pełny tekst źródłaOlalusi, Oladimeji B., i Panagiotis Spyridis. "Probabilistic Studies on the Shear Strength of Slender Steel Fiber Reinforced Concrete Structures". Applied Sciences 10, nr 19 (4.10.2020): 6955. http://dx.doi.org/10.3390/app10196955.
Pełny tekst źródłaDing, Jing, Yizhuang David Wang, Saqib Gulzar, Youngsoo Richard Kim i B. Shane Underwood. "Uncertainty Quantification of Simplified Viscoelastic Continuum Damage Fatigue Model using the Bayesian Inference-Based Markov Chain Monte Carlo Method". Transportation Research Record: Journal of the Transportation Research Board 2674, nr 4 (13.03.2020): 247–60. http://dx.doi.org/10.1177/0361198120910149.
Pełny tekst źródłaDogulu, N., P. López López, D. P. Solomatine, A. H. Weerts i D. L. Shrestha. "Estimation of predictive hydrologic uncertainty using quantile regression and UNEEC methods and their comparison on contrasting catchments". Hydrology and Earth System Sciences Discussions 11, nr 9 (10.09.2014): 10179–233. http://dx.doi.org/10.5194/hessd-11-10179-2014.
Pełny tekst źródłaKarimanzira, Divas. "Probabilistic Uncertainty Consideration in Regionalization and Prediction of Groundwater Nitrate Concentration". Knowledge 4, nr 4 (25.09.2024): 462–80. http://dx.doi.org/10.3390/knowledge4040025.
Pełny tekst źródłaCacuci, Dan G. "TOWARDS OVERCOMING THE CURSE OF DIMENSIONALITY IN PREDICTIVE MODELLING AND UNCERTAINTY QUANTIFICATION". EPJ Web of Conferences 247 (2021): 00002. http://dx.doi.org/10.1051/epjconf/202124700002.
Pełny tekst źródłaCacuci, Dan G. "TOWARDS OVERCOMING THE CURSE OF DIMENSIONALITY IN PREDICTIVE MODELLING AND UNCERTAINTY QUANTIFICATION". EPJ Web of Conferences 247 (2021): 20005. http://dx.doi.org/10.1051/epjconf/202124720005.
Pełny tekst źródłaSlavinskaya, N. A., M. Abbasi, J. H. Starcke, R. Whitside, A. Mirzayeva, U. Riedel, W. Li i in. "Development of an Uncertainty Quantification Predictive Chemical Reaction Model for Syngas Combustion". Energy & Fuels 31, nr 3 (14.02.2017): 2274–97. http://dx.doi.org/10.1021/acs.energyfuels.6b02319.
Pełny tekst źródłaTran, Vinh Ngoc, i Jongho Kim. "Quantification of predictive uncertainty with a metamodel: toward more efficient hydrologic simulations". Stochastic Environmental Research and Risk Assessment 33, nr 7 (lipiec 2019): 1453–76. http://dx.doi.org/10.1007/s00477-019-01703-0.
Pełny tekst źródłaWalz, Eva-Maria, Alexander Henzi, Johanna Ziegel i Tilmann Gneiting. "Easy Uncertainty Quantification (EasyUQ): Generating Predictive Distributions from Single-Valued Model Output". SIAM Review 66, nr 1 (luty 2024): 91–122. http://dx.doi.org/10.1137/22m1541915.
Pełny tekst źródłaHeringhaus, Monika E., Yi Zhang, André Zimmermann i Lars Mikelsons. "Towards Reliable Parameter Extraction in MEMS Final Module Testing Using Bayesian Inference". Sensors 22, nr 14 (20.07.2022): 5408. http://dx.doi.org/10.3390/s22145408.
Pełny tekst źródłaIncorvaia, Gabriele, Darryl Hond i Hamid Asgari. "Uncertainty Quantification of Machine Learning Model Performance via Anomaly-Based Dataset Dissimilarity Measures". Electronics 13, nr 5 (29.02.2024): 939. http://dx.doi.org/10.3390/electronics13050939.
Pełny tekst źródłaMa, Junwei, Xiaoxu Niu, Huiming Tang, Yankun Wang, Tao Wen i Junrong Zhang. "Displacement Prediction of a Complex Landslide in the Three Gorges Reservoir Area (China) Using a Hybrid Computational Intelligence Approach". Complexity 2020 (28.01.2020): 1–15. http://dx.doi.org/10.1155/2020/2624547.
Pełny tekst źródłaNamadchian, Ali, Mehdi Ramezani i Yuanyuan Zou. "Uncertainty quantification of model predictive control for nonlinear systems with parametric uncertainty using hybrid pseudo-spectral method". Cogent Engineering 6, nr 1 (1.01.2019): 1691803. http://dx.doi.org/10.1080/23311916.2019.1691803.
Pełny tekst źródłaChen, Ming, Xinhu Zhang, Kechun Shen i Guang Pan. "Sparse Polynomial Chaos Expansion for Uncertainty Quantification of Composite Cylindrical Shell with Geometrical and Material Uncertainty". Journal of Marine Science and Engineering 10, nr 5 (14.05.2022): 670. http://dx.doi.org/10.3390/jmse10050670.
Pełny tekst źródłaShrestha, Durga L., Nagendra Kayastha, Dimitri Solomatine i Roland Price. "Encapsulation of parametric uncertainty statistics by various predictive machine learning models: MLUE method". Journal of Hydroinformatics 16, nr 1 (25.07.2013): 95–113. http://dx.doi.org/10.2166/hydro.2013.242.
Pełny tekst źródłaYe, Yanan, Alvaro Ruiz-Martinez, Peng Wang i Daniel M. Tartakovsky. "Quantification of Predictive Uncertainty in Models of FtsZ ring assembly in Escherichia coli". Journal of Theoretical Biology 484 (styczeń 2020): 110006. http://dx.doi.org/10.1016/j.jtbi.2019.110006.
Pełny tekst źródłaHasselman, Timothy, i George Lloyd. "A top-down approach to calibration, validation, uncertainty quantification and predictive accuracy assessment". Computer Methods in Applied Mechanics and Engineering 197, nr 29-32 (maj 2008): 2596–606. http://dx.doi.org/10.1016/j.cma.2007.07.031.
Pełny tekst źródłaXie, Shulian, Feng Xue, Weimin Zhang i Jiawei Zhu. "Data-Driven Predictive Maintenance Policy Based on Dynamic Probability Distribution Prediction of Remaining Useful Life". Machines 11, nr 10 (25.09.2023): 923. http://dx.doi.org/10.3390/machines11100923.
Pełny tekst źródłaZhu, Hong-Yu, Gang Wang, Yi Liu i Ze-Kun Zhou. "Numerical investigation of transonic buffet on supercritical airfoil considering uncertainties in wind tunnel testing". International Journal of Modern Physics B 34, nr 14n16 (20.04.2020): 2040083. http://dx.doi.org/10.1142/s0217979220400834.
Pełny tekst źródłaBoso, F., i D. M. Tartakovsky. "Learning on dynamic statistical manifolds". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, nr 2239 (lipiec 2020): 20200213. http://dx.doi.org/10.1098/rspa.2020.0213.
Pełny tekst źródłaDogulu, N., P. López López, D. P. Solomatine, A. H. Weerts i D. L. Shrestha. "Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments". Hydrology and Earth System Sciences 19, nr 7 (23.07.2015): 3181–201. http://dx.doi.org/10.5194/hess-19-3181-2015.
Pełny tekst źródłaPandey, Deep Shankar, i Qi Yu. "Evidential Conditional Neural Processes". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 8 (26.06.2023): 9389–97. http://dx.doi.org/10.1609/aaai.v37i8.26125.
Pełny tekst źródłaDavis, Gary A., i Christopher Cheong. "Pedestrian Injury Severity vs. Vehicle Impact Speed: Uncertainty Quantification and Calibration to Local Conditions". Transportation Research Record: Journal of the Transportation Research Board 2673, nr 11 (16.06.2019): 583–92. http://dx.doi.org/10.1177/0361198119851747.
Pełny tekst źródłaGupta, Ishank, Deepak Devegowda, Vikram Jayaram, Chandra Rai i Carl Sondergeld. "Machine learning regressors and their metrics to predict synthetic sonic and mechanical properties". Interpretation 7, nr 3 (1.08.2019): SF41—SF55. http://dx.doi.org/10.1190/int-2018-0255.1.
Pełny tekst źródłaGuerra, Gabriel, Fernando A. Rochinha, Renato Elias, Daniel de Oliveira, Eduardo Ogasawara, Jonas Furtado Dias, Marta Mattoso i Alvaro L. G. A. Coutinho. "UNCERTAINTY QUANTIFICATION IN COMPUTATIONAL PREDICTIVE MODELS FOR FLUID DYNAMICS USING A WORKFLOW MANAGEMENT ENGINE". International Journal for Uncertainty Quantification 2, nr 1 (2012): 53–71. http://dx.doi.org/10.1615/int.j.uncertaintyquantification.v2.i1.50.
Pełny tekst źródłaPeltz, James J., Dan G. Cacuci, Aurelian F. Badea i Madalina C. Badea. "Predictive Modeling Applied to a Spent Fuel Dissolver Model—II: Uncertainty Quantification and Reduction". Nuclear Science and Engineering 183, nr 3 (1.07.2016): 332–46. http://dx.doi.org/10.13182/nse15-99.
Pełny tekst źródłaKasiviswanathan, K. S., i K. P. Sudheer. "Quantification of the predictive uncertainty of artificial neural network based river flow forecast models". Stochastic Environmental Research and Risk Assessment 27, nr 1 (28.06.2012): 137–46. http://dx.doi.org/10.1007/s00477-012-0600-2.
Pełny tekst źródła