Artykuły w czasopismach na temat „Prediction of binding affinity”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Prediction of binding affinity”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wang, Debby D., Haoran Xie i Hong Yan. "Proteo-chemometrics interaction fingerprints of protein–ligand complexes predict binding affinity". Bioinformatics 37, nr 17 (27.02.2021): 2570–79. http://dx.doi.org/10.1093/bioinformatics/btab132.
Pełny tekst źródłaKondabala, Rajesh, Vijay Kumar, Amjad Ali i Manjit Kaur. "A novel astrophysics-based framework for prediction of binding affinity of glucose binder". Modern Physics Letters B 34, nr 31 (25.07.2020): 2050346. http://dx.doi.org/10.1142/s0217984920503467.
Pełny tekst źródłaAntunes, Dinler A., Jayvee R. Abella, Didier Devaurs, Maurício M. Rigo i Lydia E. Kavraki. "Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes". Current Topics in Medicinal Chemistry 18, nr 26 (24.01.2019): 2239–55. http://dx.doi.org/10.2174/1568026619666181224101744.
Pełny tekst źródłaKwon, Yongbeom, Woong-Hee Shin, Junsu Ko i Juyong Lee. "AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks". International Journal of Molecular Sciences 21, nr 22 (10.11.2020): 8424. http://dx.doi.org/10.3390/ijms21228424.
Pełny tekst źródłaShar, Piar Ali, Weiyang Tao, Shuo Gao, Chao Huang, Bohui Li, Wenjuan Zhang, Mohamed Shahen, Chunli Zheng, Yaofei Bai i Yonghua Wang. "Pred-binding: large-scale protein–ligand binding affinity prediction". Journal of Enzyme Inhibition and Medicinal Chemistry 31, nr 6 (18.02.2016): 1443–50. http://dx.doi.org/10.3109/14756366.2016.1144594.
Pełny tekst źródłaNguyen, Austin, Abhinav Nellore i Reid F. Thompson. "Discordant results among major histocompatibility complex binding affinity prediction tools". F1000Research 12 (7.06.2023): 617. http://dx.doi.org/10.12688/f1000research.132538.1.
Pełny tekst źródłaLangham, James J., Ann E. Cleves, Russell Spitzer, Daniel Kirshner i Ajay N. Jain. "Physical Binding Pocket Induction for Affinity Prediction". Journal of Medicinal Chemistry 52, nr 19 (8.10.2009): 6107–25. http://dx.doi.org/10.1021/jm901096y.
Pełny tekst źródłaÖztürk, Hakime, Arzucan Özgür i Elif Ozkirimli. "DeepDTA: deep drug–target binding affinity prediction". Bioinformatics 34, nr 17 (1.09.2018): i821—i829. http://dx.doi.org/10.1093/bioinformatics/bty593.
Pełny tekst źródłaWang, Xun, Dayan Liu, Jinfu Zhu, Alfonso Rodriguez-Paton i Tao Song. "CSConv2d: A 2-D Structural Convolution Neural Network with a Channel and Spatial Attention Mechanism for Protein-Ligand Binding Affinity Prediction". Biomolecules 11, nr 5 (27.04.2021): 643. http://dx.doi.org/10.3390/biom11050643.
Pełny tekst źródłaPantsar, Tatu, i Antti Poso. "Binding Affinity via Docking: Fact and Fiction". Molecules 23, nr 8 (30.07.2018): 1899. http://dx.doi.org/10.3390/molecules23081899.
Pełny tekst źródłaKappel, Kalli, Inga Jarmoskaite, Pavanapuresan P. Vaidyanathan, William J. Greenleaf, Daniel Herschlag i Rhiju Das. "Blind tests of RNA–protein binding affinity prediction". Proceedings of the National Academy of Sciences 116, nr 17 (8.04.2019): 8336–41. http://dx.doi.org/10.1073/pnas.1819047116.
Pełny tekst źródłaKim, Ryangguk, i Jeffrey Skolnick. "Assessment of programs for ligand binding affinity prediction". Journal of Computational Chemistry 29, nr 8 (2008): 1316–31. http://dx.doi.org/10.1002/jcc.20893.
Pełny tekst źródłaMarshall, K. W., K. J. Wilson, J. Liang, A. Woods, D. Zaller i J. B. Rothbard. "Prediction of peptide affinity to HLA DRB1*0401." Journal of Immunology 154, nr 11 (1.06.1995): 5927–33. http://dx.doi.org/10.4049/jimmunol.154.11.5927.
Pełny tekst źródłaGim, Mogan, Junseok Choe, Seungheun Baek, Jueon Park, Chaeeun Lee, Minjae Ju, Sumin Lee i Jaewoo Kang. "ArkDTA: attention regularization guided by non-covalent interactions for explainable drug–target binding affinity prediction". Bioinformatics 39, Supplement_1 (1.06.2023): i448—i457. http://dx.doi.org/10.1093/bioinformatics/btad207.
Pełny tekst źródłaWalpoth, Belinda Nazan, i Burak Erman. "Regulation of ryanodine receptor RyR2 by protein-protein interactions: prediction of a PKA binding site on the N-terminal domain of RyR2 and its relation to disease causing mutations". F1000Research 4 (28.01.2015): 29. http://dx.doi.org/10.12688/f1000research.5858.1.
Pełny tekst źródłaHenrich, Stefan, Isabella Feierberg, Ting Wang, Niklas Blomberg i Rebecca C. Wade. "Comparative binding energy analysis for binding affinity and target selectivity prediction". Proteins: Structure, Function, and Bioinformatics 78, nr 1 (17.08.2009): 135–53. http://dx.doi.org/10.1002/prot.22579.
Pełny tekst źródłaLimbu, Sarita, i Sivanesan Dakshanamurthy. "A New Hybrid Neural Network Deep Learning Method for Protein–Ligand Binding Affinity Prediction and De Novo Drug Design". International Journal of Molecular Sciences 23, nr 22 (11.11.2022): 13912. http://dx.doi.org/10.3390/ijms232213912.
Pełny tekst źródłaOUYANG, XUCHANG, STEPHANUS DANIEL HANDOKO i CHEE KEONG KWOH. "CSCORE: A SIMPLE YET EFFECTIVE SCORING FUNCTION FOR PROTEIN–LIGAND BINDING AFFINITY PREDICTION USING MODIFIED CMAC LEARNING ARCHITECTURE". Journal of Bioinformatics and Computational Biology 09, supp01 (grudzień 2011): 1–14. http://dx.doi.org/10.1142/s021972001100577x.
Pełny tekst źródłaPandey, Mohit, Mariia Radaeva, Hazem Mslati, Olivia Garland, Michael Fernandez, Martin Ester i Artem Cherkasov. "Ligand Binding Prediction Using Protein Structure Graphs and Residual Graph Attention Networks". Molecules 27, nr 16 (11.08.2022): 5114. http://dx.doi.org/10.3390/molecules27165114.
Pełny tekst źródłaKalemati, Mahmood, Mojtaba Zamani Emani i Somayyeh Koohi. "BiComp-DTA: Drug-target binding affinity prediction through complementary biological-related and compression-based featurization approach". PLOS Computational Biology 19, nr 3 (31.03.2023): e1011036. http://dx.doi.org/10.1371/journal.pcbi.1011036.
Pełny tekst źródłaUsha, Singaravelu, i Samuel Selvaraj. "Prediction of kinase-inhibitor binding affinity using energetic parameters". Bioinformation 12, nr 3 (15.06.2016): 172–81. http://dx.doi.org/10.6026/97320630012172.
Pełny tekst źródłaDas, Sourav, Michael P. Krein i Curt M. Breneman. "Binding Affinity Prediction with Property-Encoded Shape Distribution Signatures". Journal of Chemical Information and Modeling 50, nr 2 (22.01.2010): 298–308. http://dx.doi.org/10.1021/ci9004139.
Pełny tekst źródłaYugandhar, K., i M. Michael Gromiha. "Protein–protein binding affinity prediction from amino acid sequence". Bioinformatics 30, nr 24 (28.08.2014): 3583–89. http://dx.doi.org/10.1093/bioinformatics/btu580.
Pełny tekst źródłaO'Donnell, Timothy J., Alex Rubinsteyn, Maria Bonsack, Angelika B. Riemer, Uri Laserson i Jeff Hammerbacher. "MHCflurry: Open-Source Class I MHC Binding Affinity Prediction". Cell Systems 7, nr 1 (lipiec 2018): 129–32. http://dx.doi.org/10.1016/j.cels.2018.05.014.
Pełny tekst źródłaFan, Cong, Ping-pui Wong i Huiying Zhao. "DStruBTarget: Integrating Binding Affinity with Structure Similarity for Ligand-Binding Protein Prediction". Journal of Chemical Information and Modeling 60, nr 1 (13.12.2019): 400–409. http://dx.doi.org/10.1021/acs.jcim.9b00717.
Pełny tekst źródłaChen, Zihao, Long Hu, Bao-Ting Zhang, Aiping Lu, Yaofeng Wang, Yuanyuan Yu i Ge Zhang. "Artificial Intelligence in Aptamer–Target Binding Prediction". International Journal of Molecular Sciences 22, nr 7 (30.03.2021): 3605. http://dx.doi.org/10.3390/ijms22073605.
Pełny tekst źródłaZeng, Haoyang, i David K. Gifford. "DeepLigand: accurate prediction of MHC class I ligands using peptide embedding". Bioinformatics 35, nr 14 (lipiec 2019): i278—i283. http://dx.doi.org/10.1093/bioinformatics/btz330.
Pełny tekst źródłaLi, Min, Zhangli Lu, Yifan Wu i YaoHang Li. "BACPI: a bi-directional attention neural network for compound–protein interaction and binding affinity prediction". Bioinformatics 38, nr 7 (19.01.2022): 1995–2002. http://dx.doi.org/10.1093/bioinformatics/btac035.
Pełny tekst źródłaBae, Haelee, i Hojung Nam. "GraphATT-DTA: Attention-Based Novel Representation of Interaction to Predict Drug-Target Binding Affinity". Biomedicines 11, nr 1 (27.12.2022): 67. http://dx.doi.org/10.3390/biomedicines11010067.
Pełny tekst źródłaZhang, Xianfeng, Yanhui Gu, Guandong Xu, Yafei Li, Jinlan Wang i Zhenglu Yang. "HaPPy: Harnessing the Wisdom from Multi-Perspective Graphs for Protein-Ligand Binding Affinity Prediction (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 13 (26.06.2023): 16384–85. http://dx.doi.org/10.1609/aaai.v37i13.27052.
Pełny tekst źródłaAnnala, Matti, Kirsti Laurila, Harri Lähdesmäki i Matti Nykter. "A Linear Model for Transcription Factor Binding Affinity Prediction in Protein Binding Microarrays". PLoS ONE 6, nr 5 (26.05.2011): e20059. http://dx.doi.org/10.1371/journal.pone.0020059.
Pełny tekst źródłaZhao, Huiying, Yuedong Yang, Mark von Itzstein i Yaoqi Zhou. "Carbohydrate-binding protein identification by coupling structural similarity searching with binding affinity prediction". Journal of Computational Chemistry 35, nr 30 (15.09.2014): 2177–83. http://dx.doi.org/10.1002/jcc.23730.
Pełny tekst źródłaStrack, Rita. "Predicting RNA–protein binding affinity". Nature Methods 16, nr 6 (30.05.2019): 460. http://dx.doi.org/10.1038/s41592-019-0445-4.
Pełny tekst źródłaGhimire, Ashutosh, Hilal Tayara, Zhenyu Xuan i Kil To Chong. "CSatDTA: Prediction of Drug–Target Binding Affinity Using Convolution Model with Self-Attention". International Journal of Molecular Sciences 23, nr 15 (30.07.2022): 8453. http://dx.doi.org/10.3390/ijms23158453.
Pełny tekst źródłaWang, Debby D., Moon-Tong Chan i Hong Yan. "Structure-based protein–ligand interaction fingerprints for binding affinity prediction". Computational and Structural Biotechnology Journal 19 (2021): 6291–300. http://dx.doi.org/10.1016/j.csbj.2021.11.018.
Pełny tekst źródłaHanai, Toshihiko, A. Koseki, R. Yoshikawa, M. Ueno, T. Kinoshita i H. Homma. "Prediction of human serum albumin–drug binding affinity without albumin". Analytica Chimica Acta 454, nr 1 (marzec 2002): 101–8. http://dx.doi.org/10.1016/s0003-2670(01)01515-x.
Pełny tekst źródłaZhu, Fangqiang, Xiaohua Zhang, Jonathan E. Allen, Derek Jones i Felice C. Lightstone. "Binding Affinity Prediction by Pairwise Function Based on Neural Network". Journal of Chemical Information and Modeling 60, nr 6 (27.04.2020): 2766–72. http://dx.doi.org/10.1021/acs.jcim.0c00026.
Pełny tekst źródłaRizzi, Andrea, Steven Murkli, John N. McNeill, Wei Yao, Matthew Sullivan, Michael K. Gilson, Michael W. Chiu i in. "Overview of the SAMPL6 host–guest binding affinity prediction challenge". Journal of Computer-Aided Molecular Design 32, nr 10 (październik 2018): 937–63. http://dx.doi.org/10.1007/s10822-018-0170-6.
Pełny tekst źródłaSuri, Sadhana, i Sivanesan Dakshanamurthy. "IntegralVac: A Machine Learning-Based Comprehensive Multivalent Epitope Vaccine Design Method". Vaccines 10, nr 10 (8.10.2022): 1678. http://dx.doi.org/10.3390/vaccines10101678.
Pełny tekst źródłaSharabi, Oz, Jason Shirian i Julia M. Shifman. "Predicting affinity- and specificity-enhancing mutations at protein–protein interfaces". Biochemical Society Transactions 41, nr 5 (23.09.2013): 1166–69. http://dx.doi.org/10.1042/bst20130121.
Pełny tekst źródłaLiang, Yigao, Shaohua Jiang, Min Gao, Fengjiao Jia, Zaoyang Wu i Zhijian Lyu. "GLSTM-DTA: Application of Prediction Improvement Model Based on GNN and LSTM". Journal of Physics: Conference Series 2219, nr 1 (1.04.2022): 012008. http://dx.doi.org/10.1088/1742-6596/2219/1/012008.
Pełny tekst źródłaZhao, Huiying, Yuedong Yang i Yaoqi Zhou. "Highly accurate and high-resolution function prediction of RNA binding proteins by fold recognition and binding affinity prediction". RNA Biology 8, nr 6 (listopad 2011): 988–96. http://dx.doi.org/10.4161/rna.8.6.17813.
Pełny tekst źródłaFeng, Peiyuan, Jianyang Zeng i Jianzhu Ma. "Predicting MHC-peptide binding affinity by differential boundary tree". Bioinformatics 37, Supplement_1 (1.07.2021): i254—i261. http://dx.doi.org/10.1093/bioinformatics/btab312.
Pełny tekst źródłaFedyushkina, I. V., V. S. Skvortsov, I. V. Romero Reyes i I. S. Levina. "Molecular docking and 3D-QSAR on 16a,17a-cycloalkanoprogesterone analogues as progesterone receptor ligands". Biomeditsinskaya Khimiya 59, nr 6 (2013): 622–35. http://dx.doi.org/10.18097/pbmc20135906622.
Pełny tekst źródłaMoshari, Mahshad, Qian Wang, Marek Michalak, Mariusz Klobukowski i Jack Adam Tuszynski. "Computational Prediction and Experimental Validation of the Unique Molecular Mode of Action of Scoulerine". Molecules 27, nr 13 (21.06.2022): 3991. http://dx.doi.org/10.3390/molecules27133991.
Pełny tekst źródłaLiu, Yang, Xia-hui Ouyang, Zhi-Xiong Xiao, Le Zhang i Yang Cao. "A Review on the Methods of Peptide-MHC Binding Prediction". Current Bioinformatics 15, nr 8 (1.01.2021): 878–88. http://dx.doi.org/10.2174/1574893615999200429122801.
Pełny tekst źródłaLi, Zhongyan, Qingqing Miao, Fugang Yan, Yang Meng i Peng Zhou. "Machine Learning in Quantitative Protein–peptide Affinity Prediction: Implications for Therapeutic Peptide Design". Current Drug Metabolism 20, nr 3 (22.05.2019): 170–76. http://dx.doi.org/10.2174/1389200219666181012151944.
Pełny tekst źródłaAgostino, Mark, i Sebastian Öther-Gee Pohl. "Wnt Binding Affinity Prediction for Putative Frizzled-Type Cysteine-Rich Domains". International Journal of Molecular Sciences 20, nr 17 (26.08.2019): 4168. http://dx.doi.org/10.3390/ijms20174168.
Pełny tekst źródłaYuan, Hong, Jing Huang i Jin Li. "Protein-ligand binding affinity prediction model based on graph attention network". Mathematical Biosciences and Engineering 18, nr 6 (2021): 9148–62. http://dx.doi.org/10.3934/mbe.2021451.
Pełny tekst źródłaAgrawal, Piyush, Pawan Kumar Raghav, Sherry Bhalla, Neelam Sharma i Gajendra P. S. Raghava. "Overview of Free Software Developed for Designing Drugs Based on Protein-Small Molecules Interaction". Current Topics in Medicinal Chemistry 18, nr 13 (4.10.2018): 1146–67. http://dx.doi.org/10.2174/1568026618666180816155131.
Pełny tekst źródła