Artykuły w czasopismach na temat „PREDICTION DATASET”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „PREDICTION DATASET”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Burmakova, Anastasiya, i Diana Kalibatienė. "Applying Fuzzy Inference and Machine Learning Methods for Prediction with a Small Dataset: A Case Study for Predicting the Consequences of Oil Spills on a Ground Environment". Applied Sciences 12, nr 16 (18.08.2022): 8252. http://dx.doi.org/10.3390/app12168252.
Pełny tekst źródłaAbdullahi, Dauda Sani, Dr Muhammad Sirajo Aliyu i Usman Musa Abdullahi. "Comparative analysis of resampling algorithms in the prediction of stroke diseases". UMYU Scientifica 2, nr 1 (30.03.2023): 88–94. http://dx.doi.org/10.56919/usci.2123.011.
Pełny tekst źródłaGangil, Tarun, Krishna Sharan, B. Dinesh Rao, Krishnamoorthy Palanisamy, Biswaroop Chakrabarti i Rajagopal Kadavigere. "Utility of adding Radiomics to clinical features in predicting the outcomes of radiotherapy for head and neck cancer using machine learning". PLOS ONE 17, nr 12 (15.12.2022): e0277168. http://dx.doi.org/10.1371/journal.pone.0277168.
Pełny tekst źródłaRau, Cheng-Shyuan, Shao-Chun Wu, Jung-Fang Chuang, Chun-Ying Huang, Hang-Tsung Liu, Peng-Chen Chien i Ching-Hua Hsieh. "Machine Learning Models of Survival Prediction in Trauma Patients". Journal of Clinical Medicine 8, nr 6 (5.06.2019): 799. http://dx.doi.org/10.3390/jcm8060799.
Pełny tekst źródłaSinaga, Benyamin Langgu, Sabrina Ahmad, Zuraida Abal Abas i Intan Ermahani A. Jalil. "A recommendation system of training data selection method for cross-project defect prediction". Indonesian Journal of Electrical Engineering and Computer Science 27, nr 2 (1.08.2022): 990. http://dx.doi.org/10.11591/ijeecs.v27.i2.pp990-1006.
Pełny tekst źródłaMorgan, Maria, Carla Blank i Raed Seetan. "Plant disease prediction using classification algorithms". IAES International Journal of Artificial Intelligence (IJ-AI) 10, nr 1 (1.03.2021): 257. http://dx.doi.org/10.11591/ijai.v10.i1.pp257-264.
Pełny tekst źródłaNunez, John-Jose, Teyden T. Nguyen, Yihan Zhou, Bo Cao, Raymond T. Ng, Jun Chen, Benicio N. Frey i in. "Replication of machine learning methods to predict treatment outcome with antidepressant medications in patients with major depressive disorder from STAR*D and CAN-BIND-1". PLOS ONE 16, nr 6 (28.06.2021): e0253023. http://dx.doi.org/10.1371/journal.pone.0253023.
Pełny tekst źródłaAhamed, B. Shamreen, Meenakshi S. Arya i Auxilia Osvin V. Nancy. "Diabetes Mellitus Disease Prediction Using Machine Learning Classifiers with Oversampling and Feature Augmentation". Advances in Human-Computer Interaction 2022 (19.09.2022): 1–14. http://dx.doi.org/10.1155/2022/9220560.
Pełny tekst źródłaPartin, Alexander, Thomas S. Brettin, Yitan Zhu, Jamie Overbeek, Oleksandr Narykov, Priyanka Vasanthakumari, Austin Clyde i in. "Abstract 5380: Systematic evaluation and comparison of drug response prediction models: a case study of prediction generalization across cell lines datasets". Cancer Research 83, nr 7_Supplement (4.04.2023): 5380. http://dx.doi.org/10.1158/1538-7445.am2023-5380.
Pełny tekst źródłaPreethi, B. Meena, R. Gowtham, S. Aishvarya, S. Karthick i D. G. Sabareesh. "Rainfall Prediction using Machine Learning and Deep Learning Algorithms". International Journal of Recent Technology and Engineering (IJRTE) 10, nr 4 (30.11.2021): 251–54. http://dx.doi.org/10.35940/ijrte.d6611.1110421.
Pełny tekst źródłaTian, Simiao, Laurence Mioche, Jean-Baptiste Denis i Béatrice Morio. "A multivariate model for predicting segmental body composition". British Journal of Nutrition 110, nr 12 (11.07.2013): 2260–70. http://dx.doi.org/10.1017/s0007114513001803.
Pełny tekst źródłaYuda Syahidin, Aditya Pratama Ismail i Fawwaz Nafis Siraj. "Application of Artificial Neural Network Algorithms to Heart Disease Prediction Models with Python Programming". Jurnal E-Komtek (Elektro-Komputer-Teknik) 6, nr 2 (31.12.2022): 292–302. http://dx.doi.org/10.37339/e-komtek.v6i2.932.
Pełny tekst źródłaZulqarnain, Muhammad, Rozaida Ghazali, Muhammad Ghulam Ghouse, Yana Mazwin Mohmad Hassim i Irfan Javid. "Predicting Financial Prices of Stock Market using Recurrent Convolutional Neural Networks". International Journal of Intelligent Systems and Applications 12, nr 6 (8.12.2020): 21–32. http://dx.doi.org/10.5815/ijisa.2020.06.02.
Pełny tekst źródłaLi, Wencui, Hongru Shen, Lizhu Han, Jiaxin Liu, Bohan Xiao, Xubin Li i Zhaoxiang Ye. "A Multiparametric Fusion Radiomics Signature Based on Contrast-Enhanced MRI for Predicting Early Recurrence of Hepatocellular Carcinoma". Journal of Oncology 2022 (28.09.2022): 1–12. http://dx.doi.org/10.1155/2022/3704987.
Pełny tekst źródłaFerenc, Rudolf, Zoltán Tóth, Gergely Ladányi, István Siket i Tibor Gyimóthy. "A public unified bug dataset for java and its assessment regarding metrics and bug prediction". Software Quality Journal 28, nr 4 (3.06.2020): 1447–506. http://dx.doi.org/10.1007/s11219-020-09515-0.
Pełny tekst źródłaDu, Hao, Ziyuan Pan, Kee Yuan Ngiam, Fei Wang, Ping Shum i Mengling Feng. "Self-Correcting Recurrent Neural Network for Acute Kidney Injury Prediction in Critical Care". Health Data Science 2021 (23.12.2021): 1–10. http://dx.doi.org/10.34133/2021/9808426.
Pełny tekst źródłaWynants, L., Y. Vergouwe, S. Van Huffel, D. Timmerman i B. Van Calster. "Does ignoring clustering in multicenter data influence the performance of prediction models? A simulation study". Statistical Methods in Medical Research 27, nr 6 (19.09.2016): 1723–36. http://dx.doi.org/10.1177/0962280216668555.
Pełny tekst źródłaKim, Eunhye, Tsatsral Amarbayasgalan i Hoon Jung. "Efficient Weighted Ensemble Method for Predicting Peak-Period Postal Logistics Volume: A South Korean Case Study". Applied Sciences 12, nr 23 (23.11.2022): 11962. http://dx.doi.org/10.3390/app122311962.
Pełny tekst źródłaSakiyama, Hiroshi, Motohisa Fukuda i Takashi Okuno. "Prediction of Blood-Brain Barrier Penetration (BBBP) Based on Molecular Descriptors of the Free-Form and In-Blood-Form Datasets". Molecules 26, nr 24 (7.12.2021): 7428. http://dx.doi.org/10.3390/molecules26247428.
Pełny tekst źródłaHijazi, Ala, Sameer Al-Dahidi i Safwan Altarazi. "A Novel Assisted Artificial Neural Network Modeling Approach for Improved Accuracy Using Small Datasets: Application in Residual Strength Evaluation of Panels with Multiple Site Damage Cracks". Applied Sciences 10, nr 22 (20.11.2020): 8255. http://dx.doi.org/10.3390/app10228255.
Pełny tekst źródłaChen, Qi, Bihan Tang, Yinghong Zhai, Yuqi Chen, Zhichao Jin, Hedong Han, Yongqing Gao, Cheng Wu, Tao Chen i Jia He. "Dynamic statistical model for predicting the risk of death among older Chinese people, using longitudinal repeated measures of the frailty index: a prospective cohort study". Age and Ageing 49, nr 6 (4.05.2020): 966–73. http://dx.doi.org/10.1093/ageing/afaa056.
Pełny tekst źródłaLee, Chia-Ying, Suzana J. Camargo, Fréderic Vitart, Adam H. Sobel, Joanne Camp, Shuguang Wang, Michael K. Tippett i Qidong Yang. "Subseasonal Predictions of Tropical Cyclone Occurrence and ACE in the S2S Dataset". Weather and Forecasting 35, nr 3 (22.04.2020): 921–38. http://dx.doi.org/10.1175/waf-d-19-0217.1.
Pełny tekst źródłaLo, Jui-En, Eugene Yu-Chuan Kang, Yun-Nung Chen, Yi-Ting Hsieh, Nan-Kai Wang, Ta-Ching Chen, Kuan-Jen Chen i in. "Data Homogeneity Effect in Deep Learning-Based Prediction of Type 1 Diabetic Retinopathy". Journal of Diabetes Research 2021 (28.12.2021): 1–9. http://dx.doi.org/10.1155/2021/2751695.
Pełny tekst źródłaLiu, Yimo, Wanchang Zhang, Zhijie Zhang, Qiang Xu i Weile Li. "Risk Factor Detection and Landslide Susceptibility Mapping Using Geo-Detector and Random Forest Models: The 2018 Hokkaido Eastern Iburi Earthquake". Remote Sensing 13, nr 6 (18.03.2021): 1157. http://dx.doi.org/10.3390/rs13061157.
Pełny tekst źródłaM.G, Rahul, Srujan R. Rajanalli, Sammed Endoli, Mahantesh Magi i Dr N. Ramavenkateswaran. "Machine Learning Algorithms for Classification of Gas Sensor Array Dataset". Journal of University of Shanghai for Science and Technology 23, nr 06 (17.06.2021): 721–28. http://dx.doi.org/10.51201/jusst/21/05331.
Pełny tekst źródłaAnorboev, Abdulaziz, Javokhir Musaev, Sarvinoz Anorboeva, Jeongkyu Hong, Yeong-Seok Seo, Thanh Nguyen i Dosam Hwang. "Ensemble of top3 prediction with image pixel interval method using deep learning". Computer Science and Information Systems, nr 00 (2023): 56. http://dx.doi.org/10.2298/csis230223056a.
Pełny tekst źródłaSumalatha, M., i Latha Parthiban. "Augmentation of Predictive Competence of Non-Small Cell Lung Cancer Datasets through Feature Pre-Processing Techniques". EAI Endorsed Transactions on Pervasive Health and Technology 8, nr 5 (2.11.2022): e1. http://dx.doi.org/10.4108/eetpht.v8i5.3169.
Pełny tekst źródłaMa, Yuexin, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wenping Wang i Dinesh Manocha. "TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 6120–27. http://dx.doi.org/10.1609/aaai.v33i01.33016120.
Pełny tekst źródłaAlbahli, Saleh. "A Deep Ensemble Learning Method for Effort-Aware Just-In-Time Defect Prediction". Future Internet 11, nr 12 (20.11.2019): 246. http://dx.doi.org/10.3390/fi11120246.
Pełny tekst źródłaLiang, Yun-Chia, Yona Maimury, Angela Hsiang-Ling Chen i Josue Rodolfo Cuevas Juarez. "Machine Learning-Based Prediction of Air Quality". Applied Sciences 10, nr 24 (21.12.2020): 9151. http://dx.doi.org/10.3390/app10249151.
Pełny tekst źródłaCarton, Quinten, Bart Merema i Hilde Breesch. "Recommendations for model identification for MPC of an all-Air HVAC system". E3S Web of Conferences 246 (2021): 11006. http://dx.doi.org/10.1051/e3sconf/202124611006.
Pełny tekst źródłaOzsert Yıgıt, Gozde, Mehmet Fatih Akay i Hacer Alak. "Development of New Hybrid Admission Decision Prediction Models Using Support Vector Machines Combined with Feature Selection". New Trends and Issues Proceedings on Humanities and Social Sciences 3, nr 3 (22.03.2017): 1–10. http://dx.doi.org/10.18844/prosoc.v3i3.1502.
Pełny tekst źródłaKneebone, D. G., i G. McL Dryden. "Prediction of diet quality for sheep from faecal characteristics: comparison of near-infrared spectroscopy and conventional chemistry predictive models". Animal Production Science 55, nr 1 (2015): 1. http://dx.doi.org/10.1071/an13252.
Pełny tekst źródłaMao, Yiwen, i Asgeir Sorteberg. "Improving Radar-Based Precipitation Nowcasts with Machine Learning Using an Approach Based on Random Forest". Weather and Forecasting 35, nr 6 (grudzień 2020): 2461–78. http://dx.doi.org/10.1175/waf-d-20-0080.1.
Pełny tekst źródłaQian, Tingyu. "Used Car Price Prediction by Using XGBoost". BCP Business & Management 44 (27.04.2023): 62–68. http://dx.doi.org/10.54691/bcpbm.v44i.4794.
Pełny tekst źródłaAsif, Daniyal, Mairaj Bibi, Muhammad Shoaib Arif i Aiman Mukheimer. "Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization". Algorithms 16, nr 6 (20.06.2023): 308. http://dx.doi.org/10.3390/a16060308.
Pełny tekst źródłaSon, Hye Min, See Hyung Kim, Bo Ra Kwon, Mi Jeong Kim, Chan Sun Kim i Seung Hyun Cho. "Preoperative prediction of suboptimal resection in advanced ovarian cancer based on clinical and CT parameters". Acta Radiologica 58, nr 4 (22.07.2016): 498–504. http://dx.doi.org/10.1177/0284185116658683.
Pełny tekst źródłaMostofi, Fatemeh, Vedat Toğan i Hasan Basri Başağa. "Real-estate price prediction with deep neural network and principal component analysis". Organization, Technology and Management in Construction: an International Journal 14, nr 1 (1.01.2022): 2741–59. http://dx.doi.org/10.2478/otmcj-2022-0016.
Pełny tekst źródłaFjodorova, Natalja, i Marjana Novič. "Rodent Carcinogenicity Dataset". Dataset Papers in Medicine 2013 (17.01.2013): 1–6. http://dx.doi.org/10.1155/2013/361615.
Pełny tekst źródłaAlshayeb, Mohammad, i Mashaan A. Alshammari. "The Effect of the Dataset Size on the Accuracy of Software Defect Prediction Models: An Empirical Study". Inteligencia Artificial 24, nr 68 (26.10.2021): 72–88. http://dx.doi.org/10.4114/intartif.vol24iss68pp72-88.
Pełny tekst źródłaFernandes, Pedro Henrique Evangelista, Giovanni Corsetti Silva, Diogo Berta Pitz, Matteo Schnelle, Katharina Koschek, Christof Nagel i Vinicius Carrillo Beber. "Data-Driven, Physics-Based, or Both: Fatigue Prediction of Structural Adhesive Joints by Artificial Intelligence". Applied Mechanics 4, nr 1 (8.03.2023): 334–55. http://dx.doi.org/10.3390/applmech4010019.
Pełny tekst źródłaChen, Hao, Taoyun Ji, Xiang Zhan, Xiaoxin Liu, Guojing Yu, Wen Wang, Yuwu Jiang i Xiao-Hua Zhou. "An Explainable Statistical Method for Seizure Prediction Using Brain Functional Connectivity from EEG". Computational Intelligence and Neuroscience 2022 (8.12.2022): 1–8. http://dx.doi.org/10.1155/2022/2183562.
Pełny tekst źródłaGan, Shengfeng, Mohammed Alshahrani i Shichao Liu. "Positive-Unlabeled Learning for Network Link Prediction". Mathematics 10, nr 18 (15.09.2022): 3345. http://dx.doi.org/10.3390/math10183345.
Pełny tekst źródłaGUBBI, JAYAVARDHANA, DANIEL T. H. LAI, MARIMUTHU PALANISWAMI i MICHAEL PARKER. "PROTEIN SECONDARY STRUCTURE PREDICTION USING SUPPORT VECTOR MACHINES AND A NEW FEATURE REPRESENTATION". International Journal of Computational Intelligence and Applications 06, nr 04 (grudzień 2006): 551–67. http://dx.doi.org/10.1142/s1469026806002076.
Pełny tekst źródłaLertampaiporn, Supatcha, Sirapop Nuannimnoi, Tayvich Vorapreeda, Nipa Chokesajjawatee, Wonnop Visessanguan i Chinae Thammarongtham. "PSO-LocBact: A Consensus Method for Optimizing Multiple Classifier Results for Predicting the Subcellular Localization of Bacterial Proteins". BioMed Research International 2019 (19.11.2019): 1–11. http://dx.doi.org/10.1155/2019/5617153.
Pełny tekst źródłaWang, Xiao, Yinping Jin i Qiuwen Zhang. "DeepPred-SubMito: A Novel Submitochondrial Localization Predictor Based on Multi-Channel Convolutional Neural Network and Dataset Balancing Treatment". International Journal of Molecular Sciences 21, nr 16 (9.08.2020): 5710. http://dx.doi.org/10.3390/ijms21165710.
Pełny tekst źródłaAnn Romalt, A., i Mathusoothana S. Kumar. "A Novel Machine Learning Based Probabilistic Classification Model for Heart Disease Prediction". Journal of Medical Imaging and Health Informatics 12, nr 3 (1.03.2022): 221–29. http://dx.doi.org/10.1166/jmihi.2022.3940.
Pełny tekst źródłaZareapoor, Masoumeh, i Pourya Shamsolmoali. "Boosting prediction performance on imbalanced dataset". International Journal of Information and Communication Technology 13, nr 2 (2018): 186. http://dx.doi.org/10.1504/ijict.2018.090556.
Pełny tekst źródłaZareapoor, Masoumeh, i Pourya Shamsolmoali. "Boosting prediction performance on imbalanced dataset". International Journal of Information and Communication Technology 13, nr 2 (2018): 186. http://dx.doi.org/10.1504/ijict.2018.10011701.
Pełny tekst źródłaWang, Liang, Zhiwen Yu, Bin Guo, Tao Ku i Fei Yi. "Moving Destination Prediction Using Sparse Dataset". ACM Transactions on Knowledge Discovery from Data 11, nr 3 (14.04.2017): 1–33. http://dx.doi.org/10.1145/3051128.
Pełny tekst źródła