Artykuły w czasopismach na temat „Predicting biogas yields from biomass”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Predicting biogas yields from biomass”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Idika, C., i Aimikhe, Victor Joseph. "Non-linear Regression Models for Predicting Biogas Yields from Selected Bio-wastes". Journal of Energy Research and Reviews 13, nr 2 (16.03.2023): 42–55. http://dx.doi.org/10.9734/jenrr/2023/v13i2261.
Pełny tekst źródłaFajobi, Moses Oluwatobi, Olumuyiwa Ajani Lasode, Adekunle Akanni Adeleke, Peter Pelumi Ikubanni, Ayokunle Olubusayo Balogun i Prabhu Paramasivam. "Prediction of Biogas Yield from Codigestion of Lignocellulosic Biomass Using Adaptive Neuro-Fuzzy Inference System (ANFIS) Model". Journal of Engineering 2023 (6.02.2023): 1–16. http://dx.doi.org/10.1155/2023/9335814.
Pełny tekst źródłaBray, Douglas G., Gaurav Nahar, Oliver Grasham, Vishwanath Dalvi, Shailendrasingh Rajput, Valerie Dupont, Miller Alonso Camargo-Valero i Andrew B. Ross. "The Cultivation of Water Hyacinth in India as a Feedstock for Anaerobic Digestion: Development of a Predictive Model for Scaling Integrated Systems". Energies 15, nr 24 (17.12.2022): 9599. http://dx.doi.org/10.3390/en15249599.
Pełny tekst źródłaTsapekos, Panagiotis, Panagiotis G. Kougias i Irini Angelidaki. "Mechanical pretreatment for increased biogas production from lignocellulosic biomass; predicting the methane yield from structural plant components". Waste Management 78 (sierpień 2018): 903–10. http://dx.doi.org/10.1016/j.wasman.2018.07.017.
Pełny tekst źródłaPeyrelasse, Christine, Abdellatif Barakat, Camille Lagnet, Prasad Kaparaju i Florian Monlau. "Anaerobic Digestion of Wastewater Sludge and Alkaline-Pretreated Wheat Straw at Semi-Continuous Pilot Scale: Performances and Energy Assessment". Energies 14, nr 17 (30.08.2021): 5391. http://dx.doi.org/10.3390/en14175391.
Pełny tekst źródłaRoland, Gerhards, Bezhin Kostyantyn i Santel Hans-Joachim. "Sugar beet yield loss predicted by relative weed cover, weed biomass and weed density". Plant Protection Science 53, No. 2 (25.01.2017): 118–25. http://dx.doi.org/10.17221/57/2016-pps.
Pełny tekst źródłaHadiyanto, H., Figa Muhammad Octafalahanda, Jihan Nabila, Andono Kusuma Jati, Marcelinus Christwardana, Kusmiyati Kusmiyati i Adian Khoironi. "Preliminary Observation of Biogas Production from a Mixture of Cattle Manure and Bagasse Residue in Different Composition Variations". International Journal of Renewable Energy Development 12, nr 2 (9.02.2023): 390–95. http://dx.doi.org/10.14710/ijred.2023.52446.
Pełny tekst źródłaLingner, Stefan, Eiko Thiessen i Eberhard Hartung. "Aboveground biomass estimation in linear forest objects: 2D- vs. 3D-data". Journal of Forest Science 64, No. 12 (20.12.2018): 523–32. http://dx.doi.org/10.17221/106/2018-jfs.
Pełny tekst źródłaDahunsi, S. O. "Mechanical pretreatment of lignocelluloses for enhanced biogas production: Methane yield prediction from biomass structural components". Bioresource Technology 280 (maj 2019): 18–26. http://dx.doi.org/10.1016/j.biortech.2019.02.006.
Pełny tekst źródłaQuezada-Morales, Diana Laura, Juan Campos-Guillén, Francisco Javier De Moure-Flores, Aldo Amaro-Reyes, Juan Humberto Martínez-Martínez, Ricardo Chaparro-Sánchez, Carlos Eduardo Zavala-Gómez i in. "Effect of Pretreatments on the Production of Biogas from Castor Waste by Anaerobic Digestion". Fermentation 9, nr 4 (20.04.2023): 399. http://dx.doi.org/10.3390/fermentation9040399.
Pełny tekst źródłaDychko, A., N. Remez, I. Opolinskyi, S. Kraychuk, N. Ostapchuk i L. Yevtieieva. "Modelling of Two-Stage Methane Digestion With Pretreatment of Biomass". Latvian Journal of Physics and Technical Sciences 55, nr 2 (1.04.2018): 37–44. http://dx.doi.org/10.2478/lpts-2018-0011.
Pełny tekst źródłaKolarić, Ljubiša, Vera Popović, Jela Ikanović, Ljubiša Živanović, Snežana Janković, Nikola Rakašćan i Petar Stevanović. "Productivity of soybean and the possibility of using it as energy". Selekcija i semenarstvo 29, nr 1 (2023): 51–59. http://dx.doi.org/10.5937/selsem2301051k.
Pełny tekst źródłaBaute, Kurtis, Laura Van Eerd, Darren Robinson, Peter Sikkema, Maryam Mushtaq i Brandon Gilroyed. "Comparing the Biomass Yield and Biogas Potential of Phragmites australis with Miscanthus x giganteus and Panicum virgatum Grown in Canada". Energies 11, nr 9 (22.08.2018): 2198. http://dx.doi.org/10.3390/en11092198.
Pełny tekst źródłaManeein, Supattra, John J. Milledge, Birthe V. Nielsen i Patricia J. Harvey. "A Review of Seaweed Pre-Treatment Methods for Enhanced Biofuel Production by Anaerobic Digestion or Fermentation". Fermentation 4, nr 4 (29.11.2018): 100. http://dx.doi.org/10.3390/fermentation4040100.
Pełny tekst źródłaKoçer, Anıl Tevfik, i Didem Özçimen. "Investigation of the biogas production potential from algal wastes". Waste Management & Research: The Journal for a Sustainable Circular Economy 36, nr 11 (25.09.2018): 1100–1105. http://dx.doi.org/10.1177/0734242x18798447.
Pełny tekst źródłaVia, Brian K., Oladiran Fasin i Hui Pan. "Assessment of pine biomass density through mid-infrared spectroscopy and multivariate modeling". BioResources 6, nr 1 (22.01.2011): 807–22. http://dx.doi.org/10.15376/biores.6.1.807-822.
Pełny tekst źródłaJames R., Arthur M., Cassie Castorena i Wenqiao Yuan. "Modeling product distribution of top-lit updraft gasification". BioResources 16, nr 4 (5.08.2021): 6629–42. http://dx.doi.org/10.15376/biores.16.4.6629-6642.
Pełny tekst źródłaOszust, Karolina, i Magdalena Frąc. "Evaluation of microbial community composition of dairy sewage sludge, corn silage, grass straw, and fruit waste biomass for potential use in biogas production or soil enrichment". BioResources 13, nr 3 (11.06.2018): 5740–64. http://dx.doi.org/10.15376/biores.13.3.5740-5764.
Pełny tekst źródłaMilledge, John, Birthe Nielsen, Supattra Maneein i Patricia Harvey. "A Brief Review of Anaerobic Digestion of Algae for Bioenergy". Energies 12, nr 6 (26.03.2019): 1166. http://dx.doi.org/10.3390/en12061166.
Pełny tekst źródłaRahman, Khondokar M., MK Harder i Ryan Woodard. "Energy yield potentials from the anaerobic digestion of common animal manure in Bangladesh". Energy & Environment 29, nr 8 (19.05.2018): 1338–53. http://dx.doi.org/10.1177/0958305x18776614.
Pełny tekst źródłaBudiyono, Budiyono, Hashfi Hawali Abdul Matin, Ihzani Yulistra Yasmin i Iwang Septo Priogo. "Effect of Pretreatment and C/N Ratio in Anaerobic Digestion on Biogas Production from Coffee Grounds and Rice Husk Mixtures". International Journal of Renewable Energy Development 12, nr 1 (19.12.2022): 209–15. http://dx.doi.org/10.14710/ijred.2023.49298.
Pełny tekst źródłaHassaan, Mohamed A., Antonio Pantaleo, Francesco Santoro, Marwa R. Elkatory, Giuseppe De Mastro, Amany El Sikaily, Safaa Ragab i Ahmed El Nemr. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw". Energies 13, nr 19 (23.09.2020): 5001. http://dx.doi.org/10.3390/en13195001.
Pełny tekst źródłaSong, Zilin, Gaihe Yang, Yan Guo i Tong Zhang. "Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion". BioResources 7, nr 3 (7.06.2012): 3223–36. http://dx.doi.org/10.15376/biores.7.3.3223-3236.
Pełny tekst źródłaZaidi, Asad A., Ruizhe Feng, Adil Malik, Sohaib Z. Khan, Yue Shi, Asad J. Bhutta i Ahmer H. Shah. "Combining Microwave Pretreatment with Iron Oxide Nanoparticles Enhanced Biogas and Hydrogen Yield from Green Algae". Processes 7, nr 1 (7.01.2019): 24. http://dx.doi.org/10.3390/pr7010024.
Pełny tekst źródłaBungay, Henry R. "Commercialization of Biomass Conversion". Energy Exploration & Exploitation 6, nr 1 (luty 1988): 61–69. http://dx.doi.org/10.1177/014459878800600105.
Pełny tekst źródłaKovačić, Đurđica, Brigita Popović, Davor Kralik, Meri Engler, Lara Ergović, Gordana Bukvić, Goran Herman, Ljubica Ranogajec i Bojan Stipešević. "Agronomic performance of the Camelina sativa accession and its biogas production". Glasnik zaštite bilja 45, nr 6 (18.12.2022): 71–80. http://dx.doi.org/10.31727/gzb.45.6.7.
Pełny tekst źródłaConti, Fosca, Abdessamad Saidi i Markus Goldbrunner. "CFD Modelling of Biomass Mixing in Anaerobic Digesters of Biogas Plants". Environmental and Climate Technologies 23, nr 3 (1.12.2019): 57–69. http://dx.doi.org/10.2478/rtuect-2019-0079.
Pełny tekst źródłaSihta, Finda, Suyitno, Atmanto Heru Wibowo i Retno Tanding. "Enhancing biogas quality of indigofera plant waste through co-digestion with cow dung". MATEC Web of Conferences 154 (2018): 02001. http://dx.doi.org/10.1051/matecconf/201815402001.
Pełny tekst źródłaPawłowski, Lucjan, Małgorzata Pawłowska, Cezary A. Kwiatkowski i Elżbieta Harasim. "The Role of Agriculture in Climate Change Mitigation—A Polish Example". Energies 14, nr 12 (19.06.2021): 3657. http://dx.doi.org/10.3390/en14123657.
Pełny tekst źródłaUellendahl, H., G. Wang, H. B. Møller, U. Jørgensen, I. V. Skiadas, H. N. Gavala i B. K. Ahring. "Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation". Water Science and Technology 58, nr 9 (1.11.2008): 1841–47. http://dx.doi.org/10.2166/wst.2008.504.
Pełny tekst źródłaKupryś-Caruk, Marta, i Sławomir Podlaski. "The comparison of single and double cut harvests on biomass yield, quality and biogas production of Miscanthus × giganteus". Plant, Soil and Environment 65, No. 7 (1.08.2019): 369–76. http://dx.doi.org/10.17221/97/2019-pse.
Pełny tekst źródłaRavi Kumar, D., H. N. Chanakya, Swati Bhatia i S. Dasappa. "Predicting biogas production from a two-plot fit of extractables and recalcitrants from ligno-cellulosic biomass feedstocks". Bioresource Technology Reports 10 (czerwiec 2020): 100411. http://dx.doi.org/10.1016/j.biteb.2020.100411.
Pełny tekst źródłaKhadka, Aakash, Anmol Parajuli, Sheila Dangol, Bijay Thapa, Lokesh Sapkota, Alessandro A. Carmona-Martínez i Anish Ghimire. "Effect of the Substrate to Inoculum Ratios on the Kinetics of Biogas Production during the Mesophilic Anaerobic Digestion of Food Waste". Energies 15, nr 3 (24.01.2022): 834. http://dx.doi.org/10.3390/en15030834.
Pełny tekst źródłaRaud, Merlin, Kaja Orupõld, Lisandra Rocha-Meneses, Vahur Rooni, Olev Träss i Timo Kikas. "Biomass Pretreatment with the Szego Mill™ for Bioethanol and Biogas Production". Processes 8, nr 10 (21.10.2020): 1327. http://dx.doi.org/10.3390/pr8101327.
Pełny tekst źródłaZhang, Yue, Sigrid Kusch-Brandt, Andrew M. Salter i Sonia Heaven. "Estimating the Methane Potential of Energy Crops: An Overview on Types of Data Sources and Their Limitations". Processes 9, nr 9 (1.09.2021): 1565. http://dx.doi.org/10.3390/pr9091565.
Pełny tekst źródłaLevin, Karin S., Felizitas Winkhart, Kurt-Jürgen Hülsbergen, Hans Jürgen Reents i Karl Auerswald. "Artefacts in Field Trial Research—Lateral Ammonia Fluxes Confound Fertiliser Plot Experiments". Agriculture 13, nr 8 (16.08.2023): 1617. http://dx.doi.org/10.3390/agriculture13081617.
Pełny tekst źródłaShafiei, Marzieh, Keikhosro Karimi, Hamid Zilouei i Mohammad J. Taherzadeh. "Enhanced Ethanol and Biogas Production from Pinewood by NMMO Pretreatment and Detailed Biomass Analysis". BioMed Research International 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/469378.
Pełny tekst źródłaVance, Jonathan, Khaled Rasheed, Ali Missaoui i Frederick W. Maier. "Data Synthesis for Alfalfa Biomass Yield Estimation". AI 4, nr 1 (21.12.2022): 1–15. http://dx.doi.org/10.3390/ai4010001.
Pełny tekst źródłaXiao, Kai, Wenbing Zhou, Mingjian Geng, Wei Feng, Yanyan Wang, Naidong Xiao, Duanwei Zhu, Feng Zhu i Guanglong Liu. "Comparative evaluation of enzymatic hydrolysis potential of Eichhornia crassipes and sugarcane bagasse for fermentable sugar production". BioResources 13, nr 3 (14.05.2018): 4897–915. http://dx.doi.org/10.15376/biores.13.3.4897-4915.
Pełny tekst źródłaVasiljevic, Sanja, Ivica Djalovic, Jegor Miladinovic, Nan Xu, Xin Sui, Quanzhen Wang i P. V. Vara Prasad. "Winter Pea Mixtures with Triticale and Oat for Biogas and Methane Production in Semiarid Conditions of the South Pannonian Basin". Agronomy 11, nr 9 (8.09.2021): 1800. http://dx.doi.org/10.3390/agronomy11091800.
Pełny tekst źródłaHamada, Yuki, Colleen R. Zumpf, Jules F. Cacho, DoKyoung Lee, Cheng-Hsien Lin, Arvid Boe, Emily Heaton, Robert Mitchell i Maria Cristina Negri. "Remote Sensing-Based Estimation of Advanced Perennial Grass Biomass Yields for Bioenergy". Land 10, nr 11 (10.11.2021): 1221. http://dx.doi.org/10.3390/land10111221.
Pełny tekst źródłaVintila, Teodor, Ioana Ionel, Tagne Tiegam Rufis Fregue, Adriana Raluca Wächter, Calin Julean i Anagho Solomon Gabche. "Residual biomass from food processing industry in Cameroon as feedstock for second-generation biofuels". BioResources 14, nr 2 (22.03.2019): 3731–45. http://dx.doi.org/10.15376/biores.14.2.3731-3745.
Pełny tekst źródłaKuglarz, Mariusz, i Irini Angelidaki. "Succinic Production from Source-Separated Kitchen Biowaste in a Biorefinery Concept: Focusing on Alternative Carbon Dioxide Source for Fermentation Processes". Fermentation 9, nr 3 (6.03.2023): 259. http://dx.doi.org/10.3390/fermentation9030259.
Pełny tekst źródłaPilarski, Krzysztof, Agnieszka A. Pilarska, Piotr Boniecki, Gniewko Niedbała, Karol Durczak, Kamil Witaszek, Natalia Mioduszewska i Ireneusz Kowalik. "The Efficiency of Industrial and Laboratory Anaerobic Digesters of Organic Substrates: The Use of the Biochemical Methane Potential Correction Coefficient". Energies 13, nr 5 (10.03.2020): 1280. http://dx.doi.org/10.3390/en13051280.
Pełny tekst źródłaRahimi-Ajdadi, Fatemeh, i Masoomeh Esmaili. "Effective Pre-Treatments for Enhancement of Biodegradation of Agricultural Lignocellulosic Wastes in Anaerobic Digestion – A Review". Acta Technologica Agriculturae 23, nr 3 (1.09.2020): 105–10. http://dx.doi.org/10.2478/ata-2020-0017.
Pełny tekst źródłaDzene, Ilze, Frank Hensgen, Rüdiger Graß i Michael Wachendorf. "Net Energy Balance and Fuel Quality of an Alley Cropping System Combining Grassland and Willow: Results of the 2nd Rotation". Agronomy 11, nr 7 (22.06.2021): 1272. http://dx.doi.org/10.3390/agronomy11071272.
Pełny tekst źródłaFregue, Rufis Tagne Tiegam, Adriana Raluca Wachter, Ioana Ionel, Teodor Vintila, Calin Julean, Sebastian Moisa, Claudiu Ion Ungureanu i Alin Cristian Mihaiuti. "Renewable Energy Production Potential by using from Wastes Generated in a Pigs Farm and Slaughterhouse". Revista de Chimie 70, nr 6 (15.07.2019): 2058–61. http://dx.doi.org/10.37358/rc.19.6.7275.
Pełny tekst źródłaCacho, Jules F., Jeremy Feinstein, Colleen R. Zumpf, Yuki Hamada, Daniel J. Lee, Nictor L. Namoi, DoKyoung Lee i in. "Predicting Biomass Yields of Advanced Switchgrass Cultivars for Bioenergy and Ecosystem Services Using Machine Learning". Energies 16, nr 10 (18.05.2023): 4168. http://dx.doi.org/10.3390/en16104168.
Pełny tekst źródłaMicoli, Luca, Giuseppe Di Rauso Simeone, Maria Turco, Giuseppe Toscano i Maria A. Rao. "Anaerobic Digestion of Olive Mill Wastewater in the Presence of Biochar". Energies 16, nr 7 (5.04.2023): 3259. http://dx.doi.org/10.3390/en16073259.
Pełny tekst źródłaEdgar, Vázquez-Núñez, Fernández-Luqueño Fabián, Peña-Castro Julián Mario i Vera-Reyes Ileana. "Coupling Plant Biomass Derived from Phytoremediation of Potential Toxic-Metal-Polluted Soils to Bioenergy Production and High-Value by-Products—A Review". Applied Sciences 11, nr 7 (26.03.2021): 2982. http://dx.doi.org/10.3390/app11072982.
Pełny tekst źródła