Gotowa bibliografia na temat „Predicting biogas yields from biomass”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Predicting biogas yields from biomass”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Predicting biogas yields from biomass"
Idika, C., i Aimikhe, Victor Joseph. "Non-linear Regression Models for Predicting Biogas Yields from Selected Bio-wastes". Journal of Energy Research and Reviews 13, nr 2 (16.03.2023): 42–55. http://dx.doi.org/10.9734/jenrr/2023/v13i2261.
Pełny tekst źródłaFajobi, Moses Oluwatobi, Olumuyiwa Ajani Lasode, Adekunle Akanni Adeleke, Peter Pelumi Ikubanni, Ayokunle Olubusayo Balogun i Prabhu Paramasivam. "Prediction of Biogas Yield from Codigestion of Lignocellulosic Biomass Using Adaptive Neuro-Fuzzy Inference System (ANFIS) Model". Journal of Engineering 2023 (6.02.2023): 1–16. http://dx.doi.org/10.1155/2023/9335814.
Pełny tekst źródłaBray, Douglas G., Gaurav Nahar, Oliver Grasham, Vishwanath Dalvi, Shailendrasingh Rajput, Valerie Dupont, Miller Alonso Camargo-Valero i Andrew B. Ross. "The Cultivation of Water Hyacinth in India as a Feedstock for Anaerobic Digestion: Development of a Predictive Model for Scaling Integrated Systems". Energies 15, nr 24 (17.12.2022): 9599. http://dx.doi.org/10.3390/en15249599.
Pełny tekst źródłaTsapekos, Panagiotis, Panagiotis G. Kougias i Irini Angelidaki. "Mechanical pretreatment for increased biogas production from lignocellulosic biomass; predicting the methane yield from structural plant components". Waste Management 78 (sierpień 2018): 903–10. http://dx.doi.org/10.1016/j.wasman.2018.07.017.
Pełny tekst źródłaPeyrelasse, Christine, Abdellatif Barakat, Camille Lagnet, Prasad Kaparaju i Florian Monlau. "Anaerobic Digestion of Wastewater Sludge and Alkaline-Pretreated Wheat Straw at Semi-Continuous Pilot Scale: Performances and Energy Assessment". Energies 14, nr 17 (30.08.2021): 5391. http://dx.doi.org/10.3390/en14175391.
Pełny tekst źródłaRoland, Gerhards, Bezhin Kostyantyn i Santel Hans-Joachim. "Sugar beet yield loss predicted by relative weed cover, weed biomass and weed density". Plant Protection Science 53, No. 2 (25.01.2017): 118–25. http://dx.doi.org/10.17221/57/2016-pps.
Pełny tekst źródłaHadiyanto, H., Figa Muhammad Octafalahanda, Jihan Nabila, Andono Kusuma Jati, Marcelinus Christwardana, Kusmiyati Kusmiyati i Adian Khoironi. "Preliminary Observation of Biogas Production from a Mixture of Cattle Manure and Bagasse Residue in Different Composition Variations". International Journal of Renewable Energy Development 12, nr 2 (9.02.2023): 390–95. http://dx.doi.org/10.14710/ijred.2023.52446.
Pełny tekst źródłaLingner, Stefan, Eiko Thiessen i Eberhard Hartung. "Aboveground biomass estimation in linear forest objects: 2D- vs. 3D-data". Journal of Forest Science 64, No. 12 (20.12.2018): 523–32. http://dx.doi.org/10.17221/106/2018-jfs.
Pełny tekst źródłaDahunsi, S. O. "Mechanical pretreatment of lignocelluloses for enhanced biogas production: Methane yield prediction from biomass structural components". Bioresource Technology 280 (maj 2019): 18–26. http://dx.doi.org/10.1016/j.biortech.2019.02.006.
Pełny tekst źródłaQuezada-Morales, Diana Laura, Juan Campos-Guillén, Francisco Javier De Moure-Flores, Aldo Amaro-Reyes, Juan Humberto Martínez-Martínez, Ricardo Chaparro-Sánchez, Carlos Eduardo Zavala-Gómez i in. "Effect of Pretreatments on the Production of Biogas from Castor Waste by Anaerobic Digestion". Fermentation 9, nr 4 (20.04.2023): 399. http://dx.doi.org/10.3390/fermentation9040399.
Pełny tekst źródłaCzęści książek na temat "Predicting biogas yields from biomass"
Shiralipour, Aziz, Paul H. Smith i Kenneth M. Portier. "Prediction of Methane Yields from Biomass". W Biomass Energy Development, 439–46. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-0590-4_35.
Pełny tekst źródłaHabyarimana, Ephrem, i Nicole Bartelds. "Yield Prediction in Sorghum (Sorghum bicolor (L.) Moench) and Cultivated Potato (Solanum tuberosum L.)". W Big Data in Bioeconomy, 219–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71069-9_17.
Pełny tekst źródłaHabyarimana, Ephrem, i Sofia Michailidou. "Genomic Prediction and Selection in Support of Sorghum Value Chains". W Big Data in Bioeconomy, 207–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71069-9_16.
Pełny tekst źródłaStreszczenia konferencji na temat "Predicting biogas yields from biomass"
Wu, Zhiqiang, Shuzhong Wang, Jun Zhao, Lin Chen i Haiyu Meng. "Investigation on Thermal and Kinetic Characteristics During Co-Pyrolysis of Coal and Lignocellulosic Agricultural Residue". W ASME 2014 Power Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/power2014-32162.
Pełny tekst źródłaStraume, Indulis, Imants Plume, Vilis Dubrovskis, Viktors Dreimanis i Eriks Zukovskis. "Biogas potential from co-fermentation of food leftovers and lignocellulosic biomass at mesophilic temperatures". W 22nd International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 2023. http://dx.doi.org/10.22616/erdev.2023.22.tf081.
Pełny tekst źródłaLin, Leteng, Li Sun, Xiaodong Zhang, Xiaolu Yi i Min Xu. "Simulation of Hydrogen Production From Biomass Pyrolysis Gas by Secondary Steam Reforming". W ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51045.
Pełny tekst źródłaLei, Hanwu, Shoujie Ren, James Julson, Lu Wang, Quan Bu i Roger Ruan. "Microwave Torrefaction of Corn Stover and Tech-Economic Analysis". W ASME 2011 International Manufacturing Science and Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/msec2011-50230.
Pełny tekst źródłaKessler, Travis, Thomas Schwartz, Hsi-Wu Wong i J. Hunter Mack. "Evaluating Diesel/Biofuel Blends Using Artificial Neural Networks and Linear/Nonlinear Equations". W ASME 2021 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icef2021-67785.
Pełny tekst źródłaMayor, J. Rhett, i Alexander Williams. "Investigation Into the Effects of Reaction Duration on the Isothermal Fast Pyrolysis of Biomass". W ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90405.
Pełny tekst źródłaKessler, Travis, Thomas Schwartz, Hsi-Wu Wong i J. Hunter Mack. "Predicting the Cetane Number, Yield Sooting Index, Kinematic Viscosity, and Cloud Point for Catalytically Upgraded Pyrolysis Oil Using Artificial Neural Networks". W ASME 2020 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icef2020-2978.
Pełny tekst źródłaGreen, Alex E. S., i Sean M. Bell. "Pyrolysis in Waste to Energy Conversion (WEC)". W 14th Annual North American Waste-to-Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/nawtec14-3196.
Pełny tekst źródłaKessler, Travis, Thomas Schwartz, Hsi-Wu Wong i J. Hunter Mack. "Screening Compounds for Fast Pyrolysis and Catalytic Biofuel Upgrading Using Artificial Neural Networks". W ASME 2019 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/icef2019-7170.
Pełny tekst źródłaRaporty organizacyjne na temat "Predicting biogas yields from biomass"
Hamada, Yuki, Colleen Zumpf i John Quinn. Predicting Switchgrass Biomass Yields Using a Spectral Vegetation Index Derived from Multispectral Satellite Imagery. Office of Scientific and Technical Information (OSTI), październik 2022. http://dx.doi.org/10.2172/1992815.
Pełny tekst źródłaAnderson, Gerald L., i Kalman Peleg. Precision Cropping by Remotely Sensed Prorotype Plots and Calibration in the Complex Domain. United States Department of Agriculture, grudzień 2002. http://dx.doi.org/10.32747/2002.7585193.bard.
Pełny tekst źródłaAsvapathanagul, Pitiporn, Leanne Deocampo i Nicholas Banuelos. Biological Hydrogen Gas Production from Food Waste as a Sustainable Fuel for Future Transportation. Mineta Transportation Institute, lipiec 2022. http://dx.doi.org/10.31979/mti.2021.2141.
Pełny tekst źródłaAsvapathanagul, Pitiporn, Leanne Deocampo i Nicholas Banuelos. Biological Hydrogen Gas Production from Food Waste as a Sustainable Fuel for Future Transportation. Mineta Transportation Institute, lipiec 2022. http://dx.doi.org/10.31979/mti.2022.2141.
Pełny tekst źródłaPullammanappallil, Pratap, Haim Kalman i Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, styczeń 2015. http://dx.doi.org/10.32747/2015.7600038.bard.
Pełny tekst źródła