Gotowa bibliografia na temat „Precision farming”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Precision farming”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Precision farming"
Bhatia, Kartikeya, i Devendra Duda. "Precision Farming". International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (30.04.2019): 403–6. http://dx.doi.org/10.31142/ijtsrd22793.
Pełny tekst źródłaYasam, Mr Srinath, i Dr S. Anu H. Nair. "ecision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Precision Farming and Predictive Analytics in Agriculture ContextAgriculture ContextAgriculture ContextAgriculture ContextAgriculture ContextAgriculture ContextAgriculture ContextAgriculture ContextAgriculture ContextAgriculture ContextAgriculture Context Agriculture ContextAgriculture ContextAgriculture ContextAgriculture ContextAgriculture ContextAgriculture ContextAgriculture". International Journal of Engineering and Advanced Technology 9, nr 1s5 (30.12.2019): 74–80. http://dx.doi.org/10.35940/ijeat.a1023.1291s519.
Pełny tekst źródłaNorton, T., i D. Berckmans. "Developing precision livestock farming tools for precision dairy farming". Animal Frontiers 7, nr 1 (1.01.2017): 18–23. http://dx.doi.org/10.2527/af.2017.0104.
Pełny tekst źródłaHamrita, Takoi K., Jeffrey S. Durrence i George Vellidis. "Precision farming practices". IEEE Industry Applications Magazine 15, nr 2 (marzec 2009): 34–42. http://dx.doi.org/10.1109/mias.2009.931816.
Pełny tekst źródłaTutkun, Muhittin. "PRECISION DAIRY FARMING". Journal of Agricultural, Food and Environmental Sciences 77, nr 1 (2023): 12–19. http://dx.doi.org/10.55302/jafes23771012t.
Pełny tekst źródłaGnip, P., i K. Charvát. "Management of zones in precision farming". Agricultural Economics (Zemědělská ekonomika) 49, No. 9 (2.03.2012): 416–18. http://dx.doi.org/10.17221/5425-agricecon.
Pełny tekst źródłaGyőrffy, Béla. "From Organic to Precision Farming (Contemporary Publication)". Acta Agraria Debreceniensis, nr 9 (10.12.2002): 81–86. http://dx.doi.org/10.34101/actaagrar/9/3565.
Pełny tekst źródłaMandal, Manas, Bappa Paramanik, Anamay Sarkar i Debasis Mahata. "PRECISION FARMING IN FLORICULTURE". International Journal of Research -GRANTHAALAYAH 9, nr 1 (26.01.2021): 75–77. http://dx.doi.org/10.29121/granthaalayah.v9.i1.2021.2871.
Pełny tekst źródłaIstván Komlósi. "The precision livestock farming". Acta Agraria Debreceniensis, nr 49 (13.11.2012): 201–2. http://dx.doi.org/10.34101/actaagrar/49/2525.
Pełny tekst źródłaZhuravleva, Larisa Anatolyevna. "Precision farming. Soil scanners". Agrarian Scientific Journal, nr 10 (27.10.2020): 100–106. http://dx.doi.org/10.28983/asj.y2020i10pp100-106.
Pełny tekst źródłaRozprawy doktorskie na temat "Precision farming"
Rusch, Peter C. "Precision farming in South Africa". Diss., Pretoria : [s.n.], 2001. http://upetd.up.ac.za/thesis/available/etd-01072004-153302.
Pełny tekst źródłaBlackmore, Simon. "The role of yield maps in precision farming". Thesis, Cranfield University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269521.
Pełny tekst źródłaShelley, Anthony N. "INCORPORATING MACHINE VISION IN PRECISION DAIRY FARMING TECHNOLOGIES". UKnowledge, 2016. http://uknowledge.uky.edu/ece_etds/86.
Pełny tekst źródłaWaine, T. "Non-Invasive soil property measurement for precision farming". Thesis, Cranfield University, 1999. http://dspace.lib.cranfield.ac.uk/handle/1826/11322.
Pełny tekst źródłaWaine, Toby William. "Non-invasive soil property measurement for precision farming". Thesis, Cranfield University, 1999. http://dspace.lib.cranfield.ac.uk/handle/1826/11322.
Pełny tekst źródłaEastwood, Callum Ross. "Innovatoive precision dairry systems : a case study of farmer learning and technology co-development /". Connect to thesis, 2008. http://repository.unimelb.edu.au/10187/3530.
Pełny tekst źródłaYang, Chun-Chieh. "Development of a weed management system for precision farming". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0033/NQ64697.pdf.
Pełny tekst źródłaYang, Chun-Chieh 1967. "Development of a weed management system for precision farming". Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36735.
Pełny tekst źródłaSince the success of ANN development is primarily dependent on the type of information that it is provided, much of the work involved investigation of different approaches to extracting information from the digital images of field sections and individual objects (weeds or corn plants), as well as analysis of the type of information extracted. The applicability of a given image processing method was evaluated in terms of the image recognition accuracy, as well as the computer time and memory requirements for processing and obtaining ANN output, since speed is of the essence in real-time applications. The greenness method based on a pixel-by-pixel analysis of red-green-blue intensity value of the original images was the most successful and was used in further work.
As it turned out, ANN development for this purpose was difficult. While the success rate for recognition of corn plants was high (80% or greater), the success rate for recognition of weeds tended to be low. Improvements in weed recognition were met with decreases in the success rate of corn recognition. Differentiation between weed species was less than desirable. Differentiation between corn and a given weed species was also not as good, particularly when the weed species was similar in appearance to the young corn plant.
Therefore, another strategy was developed to recognize weeds in the field by taking images between the corn rows. Previously, the images were taken randomly in the field. The images were processed to obtain percent greenness in each image and this information was used to create weed coverage and weed patchiness maps. Based on these maps, herbicide spraying was decided and spraying amounts were determined. In terms of real-time, it was possible to process the equivalent of one metre of row per second. Although this is slow compared to tractor speed in the field, the computer was not operating under dedicated conditions as one would require for the real-time application. Thus, the results were considered encouraging.
The final stage of the work involved an evaluation of the potential herbicide savings from a precision spraying system. This was done by using the weed coverage and weed patchiness maps as inputs to a simulated fuzzy logic controller, and integrating the output of the controller over the field area corresponding to the input images. The simulations with different fuzzy rules and membership functions indicated that the precision spraying approach could reduce the amount of herbicide needed for weed control in a corn field by up to 15%.
Schneider, Martin [Verfasser]. "Ökonomische Potenziale von Precision Farming unter Risikoaspekten / Martin Schneider". Aachen : Shaker, 2011. http://d-nb.info/106904833X/34.
Pełny tekst źródłaCillis, Donato. "Introducing innovative precision farming techniques in agriculture to decrease carbon emissions". Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3425242.
Pełny tekst źródłaOggi, I sistemi agricoli sono chiamati a soddisfare la crescente domanda di cibo e fibre vegetali dovuto al continuo incremento demografico. L’intensificazione di questi sistemi in termini di utilizzo massiccio di fattori produttivi e relative asportazione porta ad aumentare le preoccupazioni in merito all’impatto ambientale. Il principale obiettivo di questo lavoro di tesi è individuare, attraverso prove sperimentali combinate con simulazioni di medio-termine di diversi scenari, la miglior soluzione tecnica in grado di preservare la fertilità del suolo e ridurre l'impatto ambientale del settore agricolo studiando la sinergia tra l'agricoltura conservativa e l'agricoltura di precisione. Considerando i contributi scientifici che studiano i due principi, ed individuati i punti di approfondimento relativi alla gestione della variabilità e mitigazione dell'impatto ambientale, le ipotesi di questo lavoro di tesi sono (1) di mappare la variabilità a livello aziendale in termini di proprietà del suolo e resa in granella allo scopo di definire delle zone omogenee ed attribuirgli un potenziale produttivo; (2) studiare la sinergia tra l’agricoltura conservativa e l’agricoltura di precisione che premette di ottenere incrementi produttivi, energia netta ed efficienza energetica; (3) individuare le migliori strategie derivanti dalla sinergia tra agricoltura conservativa ed agricoltura di precisione, in grado di diminuire nel medio periodo le emissioni di CO2 dei sistemi agricoli usando le simulazioni del modello SALUS. Per verificare queste ipotesi la raccolta dati è stata effettuata utilizzando diverse fonti, approcci e strumenti. Infatti, strumenti per la mappatura del suolo ed il monitoraggio dello stato di vigore delle colture sono stati utilizzati per studiare la variabilità di campo e la sua evoluzione nel tempo per poter definire zone omogenee stabili nel tempo. Inoltre, i modelli di simulazione, quando opportunamente testati, rappresentano un utile strumento per poter definire la miglior strategia gestionale per ottenere delle produzioni sostenibili. Questi trovano diversi campi applicativi, dall’incremento dell’efficienza d’uso dei fattori produttivi alla gestione delle superfici coltivate. La caratterizzazione delle zone omogenee è stata effettuata tramite interpolazione dei dati ARP e dati di resa storici derivanti da mappe di resa. Adottando questo metodo è possibile effettuare analisi su vasta scala. La classificazione e definizione delle zone omogenee è stata ottenuta alimentando un programma geostatistico chiamato MZA con i dati descritti in precedenza. Il numero ottimale di classi omogenee è stato selezionato sulla base di indici derivanti dall’analisi del programma, che per questo studio è risultato essere quattro. Successivamente, il potenziale produttivo di ogni classe omogenea è stato attribuito attraverso analisi della varianza dei dati relativi alle analisi del suolo puntuali e dati di resa storici. Infine, il potenziale produttivo assegnato è stato validato sulla base delle rese medie storiche a livello distrettuale. Per quanto riguarda la resa in granella, nello strip-tillage (ST) e la non lavorazione (NT) si osservano cali del 20% e 15% rispetto alla tecnica convenzionale (CT). Tuttavia, il contributo dell’agricoltura di precisione permette di mitigare questo fenomeno in tutte le tecniche di lavorazione conservativa studiate in questo lavoro. Questo permette di ottenere incrementi produttivi superiori al 10%, che permettono alla minima lavorazione (MT) di eguagliare le rese di CT. Allo stesso modo, MT supportata da agricoltura di precisione raggiunge i più alti valori di energia netta, 2% maggiori di CT. Mentre, l’agricoltura di precisione contribuisce ad aumentare di quasi il 20% l’energia netta in ST e NT rispetto al corrispettivo gestito in modo uniforme. Inoltre, Questa consenta di aumentare l’efficienza energetica in MT e NT del 10% e 2% rispetto a CT. In ST invece, si osservano incrementi del 15% confrontato con la stessa tecnica senza supporto di agricoltura di precisione. D’altronde, i possibili benefici dell’agricoltura di precisione sono stati calcolati in termini di emissioni di carbonio per poter definire le migliori strategie che pesano meno dal punto di vista delle emissioni di CO2 in atmosfera nelle condizioni climatiche attuali. Dalle simulazioni del SALUS si evince che tutte le tesi studiate sono caratterizzate da perdite del contenuto di carbonio organico del suolo (SOC). Tuttavia, si sono registrate minori perdite in MT e NT del 17% e 63% rispetto a CT. Inoltre, l’adozione di tecniche di lavorazione conservativa mitiga anche le emissioni di carbonio legate alle agrotecniche, mentre l’agricoltura di precisione porta ad una ottimizzazione delle risorse esauribili come combustibile fossile e fertilizzanti. Infine, è stato dimostrato che la sinergia tra agricoltura conservativa, specialmente NT, e agricoltura di precisione rappresenta un utile strumento per mitigare le emissioni di carbonio in atmosfera legate all’attività agricola. Infatti, considerando le attuali condizioni climatiche e la variabilità di campo caratterizzante l’area di studio, NT supportata da principi e tecnologie di agricoltura di precisione è in grado di ridurre le emissioni totali annue di CO2 del 56% rispetto a CT.
Książki na temat "Precision farming"
Emmert, Bonnie. Precision farming. Beltsville, Md: National Agricultural Library, 1994.
Znajdź pełny tekst źródłaEmmert, Bonnie. Precision farming. Beltsville, Md: National Agricultural Library, 1994.
Znajdź pełny tekst źródłaEmmert, Bonnie. Precision farming. Beltsville, Md: National Agricultural Library, 1994.
Znajdź pełny tekst źródłaCox, S., red. Precision Livestock Farming. The Netherlands: Wageningen Academic Publishers, 2003. http://dx.doi.org/10.3920/978-90-8686-515-4.
Pełny tekst źródłaCox, S., red. Precision Livestock Farming '05. The Netherlands: Wageningen Academic Publishers, 2005. http://dx.doi.org/10.3920/978-90-8686-548-2.
Pełny tekst źródłaCox, S., red. Precision livestock farming '07. The Netherlands: Wageningen Academic Publishers, 2007. http://dx.doi.org/10.3920/978-90-8686-604-5.
Pełny tekst źródłaLokhorst, C., i P. W. G. Groot Koerkamp, red. Precision livestock farming '09. The Netherlands: Wageningen Academic Publishers, 2009. http://dx.doi.org/10.3920/978-90-8686-663-2.
Pełny tekst źródłaHalachmi, Ilan, red. Precision livestock farming applications. The Netherlands: Wageningen Academic Publishers, 2015. http://dx.doi.org/10.3920/978-90-8686-815-5.
Pełny tekst źródłaBanhazi, T., V. Halas i F. Maroto-Molina, red. Practical Precision Livestock Farming. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-934-3.
Pełny tekst źródłaAddicott, James E. The Precision Farming Revolution. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9686-1.
Pełny tekst źródłaCzęści książek na temat "Precision farming"
Singh, Rajesh, Anita Gehlot, Mahesh Kumar Prajapat i Bhupendra Singh. "Precision Farming". W Artificial Intelligence in Agriculture, 168–76. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003245759-14.
Pełny tekst źródłaAhmad, Latief, i Syed Sheraz Mahdi. "Precision Water Management". W Satellite Farming, 111–18. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03448-1_8.
Pełny tekst źródłaAhmad, Latief, i Syed Sheraz Mahdi. "Precision Pest Management". W Satellite Farming, 119–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03448-1_9.
Pełny tekst źródłaAhmad, Latief, i Syed Sheraz Mahdi. "Introduction to Precision Agriculture". W Satellite Farming, 1–18. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03448-1_1.
Pełny tekst źródłaAhmad, Latief, i Syed Sheraz Mahdi. "Components of Precision Agriculture". W Satellite Farming, 19–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03448-1_2.
Pełny tekst źródłaOzguven, Mehmet Metin. "Precision Livestock Farming". W The Digital Age in Agriculture, 29–58. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/b23229-2.
Pełny tekst źródłaAddicott, James E. "Farming futures". W The Precision Farming Revolution, 213–29. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9686-1_6.
Pełny tekst źródłaAhmad, Latief, i Syed Sheraz Mahdi. "Recent Advances in Precision Agriculture". W Satellite Farming, 129–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03448-1_10.
Pełny tekst źródłaAhmad, Latief, i Syed Sheraz Mahdi. "Precision Soil Sampling and Tillage". W Satellite Farming, 47–66. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03448-1_4.
Pełny tekst źródłaGriffin, Terry W., Jordan M. Shockley i Tyler B. Mark. "Economics of Precision Farming". W Precision Agriculture Basics, 221–30. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2018. http://dx.doi.org/10.2134/precisionagbasics.2016.0098.
Pełny tekst źródłaStreszczenia konferencji na temat "Precision farming"
Basim, N. Mohammed Abu, G. Abhishek Hariharan, Nishanth Solomon, U. DevaDharshini, N. Rabiya Banu, M. Saranghan i K. K. Vignajeth. "Autobot for precision farming". W 2017 International Conference on Innovations in Electrical, Electronics, Instrumentation and Media Technology (ICEEIMT). IEEE, 2017. http://dx.doi.org/10.1109/icieeimt.2017.8116804.
Pełny tekst źródłaNikhil, Tallam Charan, Tallam Karthik, Tummuri Rajasekhar Reddy i B. K. Priya. "Agrifucus for Precision Farming". W 2020 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2020. http://dx.doi.org/10.1109/iccsp48568.2020.9182357.
Pełny tekst źródłaAndonovic, Ivan, Craig Michie, Philippe Cousin, Ahmed Janati, Congduc Pham i Mamour Diop. "Precision Livestock Farming Technologies". W 2018 Global Internet of Things Summit (GIoTS). IEEE, 2018. http://dx.doi.org/10.1109/giots.2018.8534572.
Pełny tekst źródłaNailwal, Sagar, Raman Chadha, Kunal Chauhan i Gurpreet Singh. "IoT-based Precision Farming". W 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE, 2023. http://dx.doi.org/10.1109/icimia60377.2023.10426436.
Pełny tekst źródła"Rice precision farming in Korea". W ICT s for Precision Agriculture. Food and Fertilizer Technology Center for the Asian and Pacific Region, 2019. http://dx.doi.org/10.56669/zelq6618.
Pełny tekst źródłaJohnson, Richard R., John S. Hickman i Wayne F. Smith. "Precision Farming in Mechanized Agriculture". W 1997 SAE International Off-Highway and Powerplant Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/972760.
Pełny tekst źródłaNagel, Penelope, i Kim Fleming. "Changing the Cost of Farming: New Tools for Precision Farming". W Thermosense: Thermal Infrared Applications XL, redaktorzy Jaap de Vries i Douglas Burleigh. SPIE, 2018. http://dx.doi.org/10.1117/12.2327023.
Pełny tekst źródłaPino, Miguel, J. P. Matos-Carvalho, Dario Pedro, Luis M. Campos i Joao Costa Seco. "UAV Cloud Platform for Precision Farming". W 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). IEEE, 2020. http://dx.doi.org/10.1109/csndsp49049.2020.9249551.
Pełny tekst źródłaAntonopoulos, Konstantinos, Christos Panagiotou, Christos P. Antonopoulos i Nikolaos S. Voros. "A-FARM Precision Farming CPS Platform". W 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA). IEEE, 2019. http://dx.doi.org/10.1109/iisa.2019.8900717.
Pełny tekst źródłaR J Godwin, G.A.Wood, J.C.Taylor, R. Earl, S. Knight, J. Welsh i B S Blackmore. "Management Guidelines for Precision Farming : Nitrogen". W 2002 Chicago, IL July 28-31, 2002. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2002. http://dx.doi.org/10.13031/2013.9298.
Pełny tekst źródłaRaporty organizacyjne na temat "Precision farming"
Staenz, K., J. C. Deguise, J. M. Chen, H. McNairn, T. Szeredi i M. McGovern. The Use of Hyperspectral Data for Precision Farming. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/219363.
Pełny tekst źródłaMcNairn, H., J. C. Deguise, J. Secker i J. Shang. Development of Remote Sensing Image Products for Use in Precision Farming. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2001. http://dx.doi.org/10.4095/219750.
Pełny tekst źródłaPacheco, A., A. Bannari, J. C. Deguise, H. McNairn i K. Staenz. Application of Hyperspectral Remote Sensing for LAI Estimation in Precision Farming. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2001. http://dx.doi.org/10.4095/219855.
Pełny tekst źródłaMcNairn, H., J. C. Deguise i A. Pacheco. Remote sensing derived products for precision farming: report on results from Clinton '99. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2001. http://dx.doi.org/10.4095/219916.
Pełny tekst źródłaMcNairn, H., R. J. Brown, M. McGovern, T. Huffman i J. Ellis. Integration of Multi-Polarized SAR Data and High Spatial Optical Imagery For Precision Farming. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2000. http://dx.doi.org/10.4095/219685.
Pełny tekst źródłaResearch Institute (IFPRI), International Food Policy. Protected agriculture, precision agriculture, and vertical farming: Brief reviews of issues in the literature focusing on the developing region in Asia. Washington, DC: International Food Policy Research Institute, 2019. http://dx.doi.org/10.2499/p15738coll2.133152.
Pełny tekst źródłaTubb, Catherine, i Tony Seba. Rethinking Food and Agriculture 2020-2030: The Second Domestication of Plants and Animals, the Disruption of the Cow, and the Collapse of Industrial Livestock Farming. RethinkX, wrzesień 2019. http://dx.doi.org/10.61322/ijip9096.
Pełny tekst źródłaUpadhyaya, Shrini K., Abraham Shaviv, Abraham Katzir, Itzhak Shmulevich i David S. Slaughter. Development of A Real-Time, In-Situ Nitrate Sensor. United States Department of Agriculture, marzec 2002. http://dx.doi.org/10.32747/2002.7586537.bard.
Pełny tekst źródłaAgassi, Menahem, Michael J. Singer, Eyal Ben-Dor, Naftaly Goldshleger, Donald Rundquist, Dan Blumberg i Yoram Benyamini. Developing Remote Sensing Based-Techniques for the Evaluation of Soil Infiltration Rate and Surface Roughness. United States Department of Agriculture, listopad 2001. http://dx.doi.org/10.32747/2001.7586479.bard.
Pełny tekst źródła