Gotowa bibliografia na temat „Power hardware in loop”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Power hardware in loop”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Power hardware in loop"
Brandl, Ron, Mihai Calin i Thomas Degner. "Power hardware-in-the-loop setup for power system stability analyses". CIRED - Open Access Proceedings Journal 2017, nr 1 (1.10.2017): 387–90. http://dx.doi.org/10.1049/oap-cired.2017.1100.
Pełny tekst źródłaKikusato, Hiroshi, Taha Selim Ustun, Masaichi Suzuki, Shuichi Sugahara, Jun Hashimoto, Kenji Otani, Kenji Shirakawa, Rina Yabuki, Ken Watanabe i Tatsuaki Shimizu. "Microgrid Controller Testing Using Power Hardware-in-the-Loop". Energies 13, nr 8 (20.04.2020): 2044. http://dx.doi.org/10.3390/en13082044.
Pełny tekst źródłaPuschmann, Frank. "Sicheres Testen durch Power-Hardware-in-the-Loop-Systeme". ATZelektronik 16, nr 7-8 (lipiec 2021): 52–55. http://dx.doi.org/10.1007/s35658-021-0645-4.
Pełny tekst źródłaPuschmann, Frank. "Safe Testing through Power Hardware-in-the-Loop Systems". ATZelectronics worldwide 16, nr 7-8 (lipiec 2021): 50–53. http://dx.doi.org/10.1007/s38314-021-0649-0.
Pełny tekst źródłaOjaghloo, B., i G. B. Gharehpetian. "Power Hardware In The Loop Realization, Control and Simulation". Renewable Energy and Power Quality Journal 1, nr 15 (kwiecień 2017): 108–13. http://dx.doi.org/10.24084/repqj15.235.
Pełny tekst źródłaJha, Kapil, Santanu Mishra i Avinash Joshi. "Boost-Amplifier-Based Power-Hardware-in-the-Loop Simulator". IEEE Transactions on Industrial Electronics 62, nr 12 (grudzień 2015): 7479–88. http://dx.doi.org/10.1109/tie.2015.2454489.
Pełny tekst źródłaGarcía-Martínez, Eduardo, José Francisco Sanz, Jesús Muñoz-Cruzado i Juan Manuel Perié. "Online database of Power Hardware In-the-Loop tests". Data in Brief 29 (kwiecień 2020): 105128. http://dx.doi.org/10.1016/j.dib.2020.105128.
Pełny tekst źródłaRacewicz, Szymon, Filip Kutt i Łukasz Sienkiewicz. "Power Hardware-In-the-Loop Approach for Autonomous Power Generation System Analysis". Energies 15, nr 5 (25.02.2022): 1720. http://dx.doi.org/10.3390/en15051720.
Pełny tekst źródłaYu, Jungkyum, Kwangil Kim i Kyongsu Yi. "Development of a hardware-in-the-loop simulation system for power seat and power trunk electronic control unit validation". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, nr 3 (23.02.2018): 636–49. http://dx.doi.org/10.1177/0954407017751951.
Pełny tekst źródłaLi, Junhong. "Practice of power electronic hardware loop simulation based on fpga". IOP Conference Series: Materials Science and Engineering 452 (13.12.2018): 042069. http://dx.doi.org/10.1088/1757-899x/452/4/042069.
Pełny tekst źródłaRozprawy doktorskie na temat "Power hardware in loop"
Bjelevac, Salko, i Peter Karlsson. "Steering System Verification Using Hardware-in-the-Loop". Thesis, Linköpings universitet, Fordonssystem, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119332.
Pełny tekst źródłaDargahi, Kafshgarkolaei Mahdi. "Stability analysis and implementation of Power-Hardware-in-the-Loop for power system testing". Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/81957/1/Mahdi_Dargahi%20Kafshgarkolaei_Thesis.pdf.
Pełny tekst źródłaGoulkhah, Mohammad (Monty). "Waveform relaxation based hardware-in-the-loop simulation". Cigre Canada, 2014. http://hdl.handle.net/1993/31012.
Pełny tekst źródłaFebruary 2016
Larsson, Viktor, Liselott Ericson i Petter Krus. "Hardware-in-the-loop simulation of hybrid hydromechanical transmissions". Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71075.
Pełny tekst źródłaOlsén, Johan. "Modelling of Auxiliary Devices for a Hardware-in-the-Loop Application". Thesis, Linköping University, Department of Electrical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2837.
Pełny tekst źródłaThe engine torque is an important control signal. This signal is disturbed by the devices mounted on the belt. To better be able to estimate the torque signal, this work aims to model the auxiliary devices'influence on the crankshaft torque. Physical models have been developed for the air conditioning compressor, the alternator and the power steering pump. If these models are to be used in control unit function development and testing, they have to be fast enough to run on a hardware-in-the-loop simulator in real time. The models have been simplified to meet these demands.
The compressor model has a good physical basis, but the validity of the control mechanism is uncertain. The alternator model has been tested against a real electronic control unit in a hardware-in-the-loop simulator, and tests show good results. Validation against measurements is however necessary to confirm the results. The power steering pump model also has a good physical basis, but it is argued that a simple model relating the macro input-output power could be more valuable for control unit function development.
Noon, John Patrick. "Development of a Power Hardware-in-the-Loop Test Bench for Electric Machine and Drive Emulation". Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/101498.
Pełny tekst źródłaMaster of Science
According to the International Energy Agency (IEA), electric power usage is increasing across all sectors, and particularly in the transportation sector [1]. This increase is apparent in one's daily life through the increase of electric vehicles on the road. Power electronics convert electricity in one form to electricity in another form. This conversion of power is playing an increasingly important role in society because examples of this conversion include converting the dc voltage of a battery to ac voltage in an electric car or the conversion of the ac power grid to dc to power a laptop. Additionally, even within an electric car, power converters transform the battery's electric power from a higher dc voltage into lower voltage dc power to supply the entertainment system and into ac power to drive the car's motor. The electrification of the transportation sector is leading to an increase in the amount of electric energy that is being consumed and processed through power electronics. As was illustrated in the previous examples of electric cars, the application of power electronics is very wide and thus requires different testbenches for the many different applications. While some industries are used to power electronics and testing converters, transportation electrification is increasing the number of companies and industries that are using power electronics and electric machines. As industry is shifting towards these new technologies, it is a prime opportunity to change the way that high power testing is done for electric machines and power converters. Traditional testing methods are potentially dangerous and lack the flexibility that is required to test a wide variety of machines and drives. Power hardware-in-the-loop (PHIL) testing presents a safe and adaptable solution to high power testing of electric machines. Traditionally, electric machines were primarily used in heavy industry such as milling, processing, and pumping applications. These applications, and other applications such as an electric motor in a car or plane are called motor drive systems. Regardless of the particular application of the motor drive system, there are generally three parts: a dc source, an inverter, and the electric machine. In most applications, other than cars which have a dc battery, the dc source is a power electronic converter called a rectifier which converts ac electricity from the grid to dc for the motor drive. Next, the motor drive converts the dc electricity from the first stage to a controlled ac output to drive the electric machine. Finally, the electric machine itself is the final piece of the electrical system and converts the electrical energy to mechanical energy which can drive a fan, belt, or axle. The fact that this motor drive system can be generalized and applied to a wide range of applications makes its study particularly interesting. PHIL simplifies testing of these motor drive systems by allowing the inverter to connect directly to a machine emulator which is able to replicate a variety of loads. Furthermore, this work demonstrates the capability of PHIL to emulate both the induction machine load as well as the dc source by considering several rectifier topologies without any significant adjustments from the machine emulation platform. This thesis demonstrates the capabilities of the EGSTON Power Electronics GmbH COMPISO System Unit to emulate motor drive systems to allow for safer, more flexible motor drive system testing. The main goal of this thesis is to demonstrate an accurate PHIL emulation of a induction machine and to provide validation of the emulation results through comparison with an induction machine.
Daniil, Nickolaos. "Battery emulator operating in a power hardware-in-the-loop simulation : the concept of hybrid battery emulator". Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.723517.
Pełny tekst źródłaGoyal, Sachin. "Power network in the loop : subsystem testing using a switching amplifier". Thesis, Queensland University of Technology, 2009. https://eprints.qut.edu.au/26521/1/Sachin_Goyal_Thesis.pdf.
Pełny tekst źródłaGoyal, Sachin. "Power network in the loop : subsystem testing using a switching amplifier". Queensland University of Technology, 2009. http://eprints.qut.edu.au/26521/.
Pełny tekst źródłaSchmitt, Alexander [Verfasser]. "Hochdynamische Power Hardware-in-the-Loop Emulation hoch ausgenutzter Synchronmaschinen mit einem Modularen-Multiphasen-Multilevel Umrichter / Alexander Schmitt". Karlsruhe : KIT Scientific Publishing, 2017. http://www.ksp.kit.edu.
Pełny tekst źródłaKsiążki na temat "Power hardware in loop"
Hardware-in-the-Loop simulation: A scalable, component-based, time-triggered hardware-in-the-loop simulation framework. Saarbrücken: VDM Verl. Dr. Müller, 2008.
Znajdź pełny tekst źródłaD, Sable, i Goddard Space Flight Center, red. Space platform power system hardware testbed: Final report. Greenbelt, MD: NASA Goddard Space Flight Center, 1991.
Znajdź pełny tekst źródłaStepp, Ronald K. Electronic combat hardware-in-the-loop testing in an open air environment. Monterey, Calif: Naval Postgraduate School, 1994.
Znajdź pełny tekst źródłahler, Christian Ko. Enhancing embedded systems simulation: A Chip-Hardware-in-the-loop simulation framework. Wiesbaden: Vieweg + Teubner, 2011.
Znajdź pełny tekst źródłaTripathi, Saurabh Mani, i Francisco M. Gonzalez-Longatt, red. Real-Time Simulation and Hardware-in-the-Loop Testing Using Typhoon HIL. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0224-8.
Pełny tekst źródłaThe power of assertions in SystemVerilog. New York: Springer, 2010.
Znajdź pełny tekst źródłaKarimi-Ghartemani, Masoud. Enhanced Phase-Locked Loop Structures for Power and Energy Applications. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118795187.
Pełny tekst źródłaKarimi-Ghartemani, Masoud. Enhanced phase-locked loop structures for power and energy applications. Hoboken, New Jersey: IEEE Press/Wiley, 2014.
Znajdź pełny tekst źródłaSingh, Gaurav, i Sandeep K. Shukla. Low Power Hardware Synthesis from Concurrent Action-Oriented Specifications. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6481-6.
Pełny tekst źródłaShafique, Muhammad, i Jörg Henkel. Hardware/Software Architectures for Low-Power Embedded Multimedia Systems. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9692-3.
Pełny tekst źródłaCzęści książek na temat "Power hardware in loop"
Nguyen, V. H., Q. T. Tran, E. Guillo-Sansano, P. Kotsampopoulos, C. Gavriluta, G. Lauss, T. I. Strasser i in. "Hardware-in-the-Loop Assessment Methods". W European Guide to Power System Testing, 51–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42274-5_4.
Pełny tekst źródłaZhang, Xi, i Chris Mi. "Hardware-in-the-loop and Software-in-the-loop Testing for Vehicle Power Management". W Vehicle Power Management, 303–29. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-736-5_10.
Pełny tekst źródłaSrinivasan, Radhakrishnan. "PowerFactory as a Software Stand-in for Hardware in Hardware-In-Loop Testing". W PowerFactory Applications for Power System Analysis, 367–90. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12958-7_16.
Pełny tekst źródłaStifter, Matthias, Filip Andrén, Roman Schwalbe i Werner Tremmel. "Interfacing PowerFactory: Co-simulation, Real-Time Simulation and Controller Hardware-in-the-Loop Applications". W PowerFactory Applications for Power System Analysis, 343–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12958-7_15.
Pełny tekst źródłaKennel, Ralph M., Till Boller i Joachim Holtz. "Hardware-in-the-Loop Systems with Power Electronics: A Powerful Simulation Tool". W Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications, 573–90. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118755525.ch18a.
Pełny tekst źródłaDufour, Christian, Karthik Palaniappan i Brian J. Seibel. "Hardware-in-the-Loop Simulation of High-Power Modular Converters and Drives". W Lecture Notes in Electrical Engineering, 17–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37161-6_2.
Pełny tekst źródłaKiffe, Axel, i Thomas Schulte. "Average Models for Hardware-in-the-Loop Simulation of Power Electronic Circuits". W Simulation and Testing for Vehicle Technology, 319–42. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32345-9_22.
Pełny tekst źródłaBin, Sun, Zeng Fan-ming, Zhang Wei-dong i Zhao Hua. "Development of Frequency and Power Control System Hardware-in-Loop Simulation Platform for Ship Power Plant". W Intelligence Computation and Evolutionary Computation, 305–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31656-2_44.
Pełny tekst źródłaXu, Menglong, Abdul Hadi Hanan, Zhichuan Wei, Shaokun Wang, Jun Li i Bin Chen. "Field-Oriented Control Strategy Verification Based on Power Hardware in Loop Simulation Technology". W The Proceedings of the 5th International Conference on Energy Storage and Intelligent Vehicles (ICEIV 2022), 32–43. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1027-4_4.
Pełny tekst źródłaDufour, Christian, Karthik Palaniappan i Brian J. Seibel. "Correction to: Hardware-in-the-Loop Simulation of High-Power Modular Converters and Drives". W Lecture Notes in Electrical Engineering, C1. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37161-6_57.
Pełny tekst źródłaStreszczenia konferencji na temat "Power hardware in loop"
Aghamolki, Hossein Ghassempour, Zhixin Miao i Lingling Fan. "A hardware-in-the-loop SCADA testbed". W 2015 North American Power Symposium (NAPS). IEEE, 2015. http://dx.doi.org/10.1109/naps.2015.7335093.
Pełny tekst źródłaIngalalli, Aravind, Hariram Satheesh i Mallikarjun Kande. "Platform for Hardware In Loop Simulation". W 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). IEEE, 2016. http://dx.doi.org/10.1109/speedam.2016.7525843.
Pełny tekst źródłaNelson, Austin, Sudipta Chakraborty, Dexin Wang, Pawan Singh, Qiang Cui, Liuqing Yang i Siddharth Suryanarayanan. "Cyber-physical test platform for microgrids: Combining hardware, hardware-in-the-loop, and network-simulator-in-the-loop". W 2016 IEEE Power and Energy Society General Meeting (PESGM). IEEE, 2016. http://dx.doi.org/10.1109/pesgm.2016.7741176.
Pełny tekst źródłaMarks, Nathan D., Wang Y. Kong i Daniel S. Birt. "Interface Compensation for Power Hardware-in-the-Loop". W 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE). IEEE, 2018. http://dx.doi.org/10.1109/isie.2018.8433620.
Pełny tekst źródłaKutt, Filip, Lukasz Sienkiewicz, Agata Melchert i Wojciech Pawlicki. "Power Hardware-in-the-Loop Approach In Power System Development". W 2018 International Symposium on Electrical Machines (SME). IEEE, 2018. http://dx.doi.org/10.1109/isem.2018.8443025.
Pełny tekst źródłaLarsson, Viktor, Liselott Ericson i Petter Krus. "Hardware-in-the-loop simulation of hybrid hydromechanical transmissions". W 12th International Fluid Power Conference. Technische Universität Dresden, 2020. http://dx.doi.org/10.25368/2020.14.
Pełny tekst źródłaBrandl, Ron, Juan Montoya, Thomas Degner i Diana Strauss-Mincu. "Power system stability studies including real hardware using phasor power hardware-in-the-loop technology". W 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES). IEEE, 2018. http://dx.doi.org/10.1109/ieses.2018.8349937.
Pełny tekst źródłaLemaire, Michel, Pierre Sicard i Jean Belanger. "Prototyping and Testing Power Electronics Systems Using Controller Hardware-In-the-Loop (HIL) and Power Hardware-In-the-Loop (PHIL) Simulations". W 2015 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2015. http://dx.doi.org/10.1109/vppc.2015.7353000.
Pełny tekst źródłaQingping Wang, Changnian Lin, Yong Chang, Jingke Wu, Ping Zhang, Bin Feng i Shuyang Gu. "Study of HVDC hardware-in-loop training simulator". W 2010 International Conference on Power System Technology - (POWERCON 2010). IEEE, 2010. http://dx.doi.org/10.1109/powercon.2010.5666740.
Pełny tekst źródłaBoyd, Michael, John McNichols, Mitch Wolff, Michael Corbett i Peter Lamm. "Hardware-in-the-Loop Power Extraction Using Different Real-Time Platforms". W Power Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2008. http://dx.doi.org/10.4271/2008-01-2909.
Pełny tekst źródłaRaporty organizacyjne na temat "Power hardware in loop"
McIntosh, John, i Klaehn Burkes. Power Hardware-in-the-Loop Testing of Distribution Solid State Transformers. Office of Scientific and Technical Information (OSTI), październik 2018. http://dx.doi.org/10.2172/1476257.
Pełny tekst źródłaSchoder, Karl, James Langston, John Hauer, Ferenc Bogdan, Michael Steurer i Barry Mather. Power Hardware-in-the-Loop-Based Anti-Islanding Evaluation and Demonstration. Office of Scientific and Technical Information (OSTI), październik 2015. http://dx.doi.org/10.2172/1226153.
Pełny tekst źródłaBuford, James A., i Kenneth R. Letson. THAAD Hardware-in-the-Loop Signal Injection Hardware Technical Description. Fort Belvoir, VA: Defense Technical Information Center, marzec 1998. http://dx.doi.org/10.21236/ada341751.
Pełny tekst źródłaRigas, Nikolaos, John Curtiss Fox, Randy Collins, James Tuten, Thomas Salem, Mark McKinney, Ramtin Hadidi, Benjamin Gislason, Eric Boessneck i Jesse Leonard. 15 MW HArdware-in-the-loop Grid Simulation Project. Office of Scientific and Technical Information (OSTI), październik 2014. http://dx.doi.org/10.2172/1340152.
Pełny tekst źródłaMurakami, Kei. Hardware-In-The-Loop Testing of Distributed Electronic Systems. Warrendale, PA: SAE International, maj 2005. http://dx.doi.org/10.4271/2005-08-0080.
Pełny tekst źródłaBurkholder, R. J., Robert J. Mariano, I. J. Gupta i P. Schniter. Hardware-in-the-loop testing of wireless systems in realistic environments. Office of Scientific and Technical Information (OSTI), czerwiec 2006. http://dx.doi.org/10.2172/889418.
Pełny tekst źródłaSchkoda, Ryan, Curtiss Fox, Ramtin Hadidi, Vahan Gevorgian, Robb Wallen i Scott Lambert. Hardware-in-the-Loop Testing of Utility-Scale Wind Turbine Generators. Office of Scientific and Technical Information (OSTI), styczeń 2016. http://dx.doi.org/10.2172/1237305.
Pełny tekst źródłaSchoder, K., J. Langston, M. Steurer, S. Azongha, M. Sloderbeck, T. Chiocchio, C. Edrington, A. Farrell, J. Vaidya i K. Yost. Hardware-in-the-Loop Testing of a High-Speed Generator Excitation Controller. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2010. http://dx.doi.org/10.21236/ada522750.
Pełny tekst źródłaShenker, Steven, Rosana Yamasaki i Tobias Kreuzinger. Testing of ABS Systems for 2-Wheelers via Hardware-in-the-Loop Technology. Warrendale, PA: SAE International, październik 2013. http://dx.doi.org/10.4271/2013-32-9175.
Pełny tekst źródłaFalsafi, Babak, i Raj Rajkumar. Powertap: System-Wide Power Management Through Power-Aware System Software And Hardware. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2005. http://dx.doi.org/10.21236/ada446222.
Pełny tekst źródła