Gotowa bibliografia na temat „Power grid systems”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Power grid systems”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Power grid systems"
Khan, Javeed Ahmad. "Grid connected PV systems and their growth in power system". International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (30.04.2018): 1791–97. http://dx.doi.org/10.31142/ijtsrd11646.
Pełny tekst źródłaChaurase, Payal, i Pankaj Ramtekkar. "A new design of control & power management strategies of hybrid ac-dc microgrids toward high power quality". Journal of Physics: Conference Series 2089, nr 1 (1.11.2021): 012036. http://dx.doi.org/10.1088/1742-6596/2089/1/012036.
Pełny tekst źródłaUnruh, Peter, Maria Nuschke, Philipp Strauß i Friedrich Welck. "Overview on Grid-Forming Inverter Control Methods". Energies 13, nr 10 (20.05.2020): 2589. http://dx.doi.org/10.3390/en13102589.
Pełny tekst źródłaMeinecke, Steffen, Džanan Sarajlić, Simon Ruben Drauz, Annika Klettke, Lars-Peter Lauven, Christian Rehtanz, Albert Moser i Martin Braun. "SimBench—A Benchmark Dataset of Electric Power Systems to Compare Innovative Solutions Based on Power Flow Analysis". Energies 13, nr 12 (26.06.2020): 3290. http://dx.doi.org/10.3390/en13123290.
Pełny tekst źródłaSingh, Ankit Kumar. "UHVDC-Technology Future of India Electricity Transmission". International Journal for Research in Applied Science and Engineering Technology 9, nr VII (20.07.2021): 1620–27. http://dx.doi.org/10.22214/ijraset.2021.36686.
Pełny tekst źródłaKebede, Fitsum-Salehu, Jean-Christophe Olivier, Salvy Bourguet i Mohamed Machmoum. "Reliability Evaluation of Renewable Power Systems through Distribution Network Power Outage Modelling". Energies 14, nr 11 (31.05.2021): 3225. http://dx.doi.org/10.3390/en14113225.
Pełny tekst źródłaConsoli, Alfio, Mario Cacciato i Vittorio Crisafulli. "Power Converters For Photovoltaic Generation Systems In Smart Grid Applications". Eletrônica de Potência 14, nr 4 (1.11.2009): 251–57. http://dx.doi.org/10.18618/rep.2009.4.251257.
Pełny tekst źródłaDorothy, R., i Sasilatha Sasilatha. "Smart Grid Systems Based Survey on Cyber Security Issues". Bulletin of Electrical Engineering and Informatics 6, nr 4 (1.12.2017): 337–42. http://dx.doi.org/10.11591/eei.v6i4.862.
Pełny tekst źródłaRauch, Johannes, i Oliver Brückl. "Achieving Optimal Reactive Power Compensation in Distribution Grids by Using Industrial Compensation Systems". Electricity 4, nr 1 (2.03.2023): 78–95. http://dx.doi.org/10.3390/electricity4010006.
Pełny tekst źródłaDomino, A., K. Zymmer i M. Parchomiuk. "Selected converter topologies for interfacing energy storages with power grid". Bulletin of the Polish Academy of Sciences Technical Sciences 65, nr 5 (1.10.2017): 579–88. http://dx.doi.org/10.1515/bpasts-2017-0063.
Pełny tekst źródłaRozprawy doktorskie na temat "Power grid systems"
Lim, Pei Yi. "Power management strategies for off-grid hybrid power systems". Thesis, Curtin University, 2011. http://hdl.handle.net/20.500.11937/2503.
Pełny tekst źródłaEl, Zein Musadag. "Off-grid Wind Power Systems: Planning and Decision Making". Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-396057.
Pełny tekst źródłaAlshogeathri, Ali Mofleh Ali. "Vehicle-to-Grid (V2G) integration with the power grid using a fuzzy logic controller". Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/20606.
Pełny tekst źródłaDepartment of Electrical and Computer Engineering
Shelli K. Starrett
This thesis introduces a Vehicle to Grid (V2G) system which coordinates the charging, and discharging among the Electric Vehicles (EVs) and two-test systems, to help with peak power shaving and voltage stability of the system. Allowing EVs to charge and discharge without any control may lead to voltage variations and disturbance to the grid, but if the charging and discharging of the EVs is done in a smart manner, they can help the power network. In this thesis, fuzzy logic controllers (FLC) are used to control the flow of power between the grid and the electric vehicles. The presented work in this thesis mainly focuses on the control architecture for a V2G station that allows for using EVs batteries to help the grid’s voltage stability. The designed controllers sustain the node voltage, and thus also achieve peak shaving. The proposed architectures are tested on 16 -generator and 6-generator test systems to examine the effectiveness of the proposed designs. Five fuzzy logic schemes are tested to illustrate the V2G system’s ability to influence system voltage stability. The major contributions of this thesis are as follows: • FLC based control tool for V2G station present at a weak bus in the system. • Investigate the effect of the station location and voltage sensitivity. • Comparison of chargers providing real power versus reactive power. • Simulation of controller and system interactions in a daily load curve cycle. Keywords: State of Charge (SOC), Electric Vehicle (EV), Fuzzy Logic Controller (FLC), Vehicle to grid (V2G), and Power System Voltage Stability.
Zabihi, Sheikhrajeh Nima. "Vehicle-to-grid (V2G) and grid conditioning systems". Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3426634.
Pełny tekst źródłaIl termine Vehicle-to-Grid (V2G) si riferisce alla tecnologia che permette uno scambio di potenza bidirezionale tra la rete elettrica e le batterie dei veicoli elettrici di tipo plug-in (PEV). La tecnologia V2G può essere un elemento chiave della rete intelligente, che può utilizzare le batterie dei veicoli come un sistema di accumulo locale. Le batterie dei veicoli possono contribuire alla stabilità della rete e a soddisfare la domanda di energia soprattutto nelle ore di punta. Un PEV ha bisogno di un caricatore bidirezionale per implementare il V2G, e, di conseguenza, gli studi riguardo il loro progetto, la funzionalità e l'efficienza sono del massimo interesse. Questa tesi descrive lo stato dell’arte di questi caricabatteria e tratta alcuni aspetti di un convertitore bidirezionale e alcuni casi di studio relativi a questo argomento. L'obiettivo principale di questo lavoro è di sviluppare il progetto e gli algoritmi di controllo di un caricabatteria bidirezionale con capacità di caricare la batteria di un veicolo plug-in e contemporaneamente di agire come filtro attivo nei confronti della linea di alimentazione. Dopo il primo capitolo introduttivo, nel secondo capitolo viene riportata la terminologia usata in questo campo di ricerca. Vengono anche brevemente descritte diverse strategie intelligenti di ricarica, gli approcci per la realizzazione dei caricabatteria dei PEV e gli standard di ricarica. L’analisi dei vari tipi di caricabatteria viene approfondita nel terzo capitolo. Sono considerati il caricabatteria tradizionale (CBC) con front-end costituito da un raddrizzatore a diodi, il caricabatteria dotato di correttore del fattore di potenza (PFC), il caricabatteria bidirezionale (BBC), e il caricabatteria integrale (IBC). Nel capitolo quattro vengono date le definizioni della potenza elettrica in condizioni non sinusoidali assieme ad alcuni esempi delle inadeguatezze della teoria classica della potenza nel descrivere fenomeni non lineari che si verificano durante il funzionamento di un sistema di potenza. Nel quinto capitolo sono presentati i concetti di base della teoria potenza istantanea attiva e reattiva (nota anche come teoria pq) applicata alla compensazione di sistemi non sinusoidali. Vengono introdotte le definizioni della potenza reale, immaginaria e di sequenza zero e viene mostrato come questa teoria renda agevole la comprensione dei fenomeni causati da tensioni o correnti non sinusoidali. Essa è particolarmente adatta per il progetto di un caricabatteria quando esso viene visto come un condizionatore di potenza. Il capitolo sei è dedicato ai concetti di base dei filtri attivi di tipo shunt. Essi possono svolgere diversi tipi di funzioni, come la compensazione delle armoniche di corrente generate da carichi non lineari impedendo la loro propagazione nella rete. L’algoritmo di compensazione basato sulle potenze definite nel riferimento αβ è molto flessibile e quindi la teoria della potenza istantanea è stata considerata come la base per lo sviluppo del sistema di controllo dei filtri attivi. Alcuni esempi di compensazione descritti nel capitolo precedente sono stati simulati e sono stati riportati i risultati. Nel capitolo sette è considerato il dimensionamento dei dispositivi di potenza che costituiscono il caricabatteria in relazione ai diversi servizi ausiliari che esso può fornire. Sono stati dimensionati in tensione e corrente gli interruttori elettronici di potenza, gli induttori di accoppiamento con la rete e gli altri componenti passivi. Nel capitolo otto viene considerato un caricabatteria che alimenta il proprio carico e contemporaneamente compensa i carichi non lineari connessi nelle vicinanze, costituiti da raddrizzatori. Queste funzionalità aggiuntive in termini di condizionamento della potenza di rete sono state quantificate al fine di determinare la capacità di un caricabatteria costituito da determinati componenti attivi e passivi di supportare la rete svolgendo la funzione di filtro attivo. Nel nono capitolo sono state dimensionate le induttanze di filtro di un caricabatteria per uno specifico caso di studio in cui era richiesta la capacità sia di ricaricare la batteria che di iniettare potenza attiva in rete, sia nel caso di connessione monofase che trifase. La conoscenza dell’ampiezza dell’ondulazione di corrente è un requisito importante per il dimensionamento delle induttanze. Perciò è stato effettuato un calcolo preciso di questa grandezza sia nel caso di un caricabatteria connesso alla rete monofase e operante secondo la tecnica di PWM, sia nel caso di connessione alla rete trifase e adozione della tecnica SVM. Nel capitolo dieci viene considerato un caso di studio riguardo il dimensionamento di un filtro LCL. IL capitolo undici contiene uno studio teorico dei regolatori risonanti. Essi risolvono il problema posto dai convenzionali regolatori PI, che quando sono impiegati per il controllo di grandezze alternate, come accade nel caso delle correnti in un convertitore dc-ac, non sono in grado di annullare l’errore a regime a causa del guadagno finito alla frequenza di funzionamento. Un regolatore risonante presenta invece un guadagno idealmente infinito alla frequenza di funzionamento e quindi garantisce un errore a regime nullo. L’efficacia dei regolatori risonanti è stata verificata per mezzo di simulazioni. Nel capitolo dodici sono riportate le normative riguardanti i connettori, le modalità di ricarica e la connessione dei caricabatteria dei PEV alla rete elettrica. Esse mirano a definire una procedura di ricarica comune a tutti i PEV e tutte le infrastrutture di ricarica, siano esse pubbliche o private.
Ropp, Michael Eugene. "Design issues for grid-connected photovoltaic systems". Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/13456.
Pełny tekst źródłaSteel, Katherine Deaton. "Energy system development in Africa : the case of grid and off-grid power in Kenya". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43840.
Pełny tekst źródłaIncludes bibliographical references.
This research used a combination of a grounded theory approach and system dynamics to study the electric power system in Kenya and to model the feedback at work in the development of the system. The ethnographic study revealed the challenges faced by consumers in choosing between grid and off-grid power options. Examination of this challenge leads to the hypothesis that competition between the grid and off-grid markets is contributing to the low growth in power consumption and that there is the potential for off-grid to become the dominant option in the future. This theory guided the construction of a system dynamics model focusing on consumers' decision-making and their interaction with the operation of the system. I then used the model to explore the dynamics of the system through scenario testing. There were two key outcomes from the model. The first showed that given the parameters chosen in most cases there is a clearly dominant option, although it changes over time. This finding points to the second key outcome the model, which is that there are realistic scenarios under which off-grid generation will become the dominant supply source. This shift could be induced by either reduced overhead on photovoltaic panels or high fuel prices. The outcomes from this research have implications for future electricity planning in Kenya and elsewhere in Africa. In particular, there is a need to decouple the system from external prices or account for the extreme uncertainty in fuel prices. Given the potential shift to large-scale off grid power generation, energy planners also need to look at options for managing a decentralized power system architecture and consider how to build in options for future reintegration if a large-scale centralized generation source comes online.
(cont.) This research has both academic and applied contributions. On the academic side, it extends the range of engineering systems modeling to include qualitative factors found in an African environment. These factors include the addition of reliability and availability of the electric power grid and the biases in decision-making, which differ from those in industrialized countries. While the model clearly has direct application in Kenya, it was designed with flexibility to be expanded to include other countries and regions and could be a useful tool for understanding policy trade-offs in African electrification planning.
by Katherine Deaton Steel.
Ph.D.
Ramachandran, Jayaraman. "Modelling of grid connected geographically dispersed PV systems for power system studies". Thesis, Northumbria University, 2005. http://nrl.northumbria.ac.uk/3224/.
Pełny tekst źródłaZhou, Huafeng, i 周華鋒. "Design of grid service-based power system control centers for future electricity systems". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40687429.
Pełny tekst źródłaZhou, Huafeng. "Design of grid service-based power system control centers for future electricity systems". Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B40687429.
Pełny tekst źródłaAndreasson, Martin. "Correlated Failures of Power Systems: Analysis of the Nordic Grid". Thesis, KTH, Reglerteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-55844.
Pełny tekst źródłaKsiążki na temat "Power grid systems"
Xuemin, Zhang, Cao Ming i SpringerLink (Online service), red. Power Grid Complexity. Berlin, Heidelberg: Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg, 2011.
Znajdź pełny tekst źródłaHeier, Siegfried. Grid integration of wind energy conversion systems. Chichester: Wiley, 1998.
Znajdź pełny tekst źródłaGrid integration of wind energy conversion systems. Wyd. 2. Chichester, West Sussex, England: Wiley, 2006.
Znajdź pełny tekst źródłaSmart grid dictionary. Wyd. 3. [Charleston, SC?]: GreenSpring Marketing, 2011.
Znajdź pełny tekst źródłaHertzog, Christine. Smart grid dictionary. Wyd. 6. Charleston, SC?]: GreenSpring Marketing LLC, 2014.
Znajdź pełny tekst źródłaHertzog, Christine. Smart grid dictionary. Wyd. 5. Charleston, SC?]: GreenSpring Marketing LLC, 2013.
Znajdź pełny tekst źródłaSmart grid dictionary. [United States]: GreenSpring Marketing, 2009.
Znajdź pełny tekst źródłaTeodorescu, Remus, Marco Liserre i Pedro Rodríguez. Grid Converters for Photovoltaic and Wind Power Systems. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470667057.
Pełny tekst źródłaTeodorescu, Remus. Grid converters for photovoltaic and wind power systems. Chichester: Wiley, 2011.
Znajdź pełny tekst źródłaKeyhani, Ali. Design of smart power grid renewable energy systems. Hoboken, N.J: Wiley, 2011.
Znajdź pełny tekst źródłaCzęści książek na temat "Power grid systems"
Daneshvar, Mohammadreza, Somayeh Asadi i Behnam Mohammadi-Ivatloo. "Overview of the Grid Modernization and Smart Grids". W Power Systems, 1–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64099-6_1.
Pełny tekst źródłaUkil, Abhisek, Yew Ming Yeap i Kuntal Satpathi. "Introduction to DC Grid". W Power Systems, 1–37. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2977-1_1.
Pełny tekst źródłaHaarla, Liisa, Mikko Koskinen, Ritva Hirvonen i Pierre-Etienne Labeau. "Grid Security: Problem Statement". W Power Systems, 3–19. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-145-5_2.
Pełny tekst źródłaHaarla, Liisa, Mikko Koskinen, Ritva Hirvonen i Pierre-Etienne Labeau. "Grid Faults and Component Failures". W Power Systems, 61–78. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-145-5_5.
Pełny tekst źródłaMei, Shengwei, Xuemin Zhang i Ming Cao. "Foundation of SOC in Power Systems". W Power Grid Complexity, 95–132. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16211-4_3.
Pełny tekst źródłaAbe, Rikiya. "The Mechanism of Synchronous Power Systems". W Digital Grid, 11–21. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4280-0_2.
Pełny tekst źródłaAbe, Rikiya. "Escaping the Curse of Power Systems". W Digital Grid, 45–54. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4280-0_5.
Pełny tekst źródłaHaarla, Liisa, Mikko Koskinen, Ritva Hirvonen i Pierre-Etienne Labeau. "Basic Concepts of Transmission Grid Planning". W Power Systems, 21–36. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-145-5_3.
Pełny tekst źródłaShah, Yatish T. "Off-grid Hybrid Energy Systems". W Hybrid Power, 419–534. Boca Raton, FL : CRC Press, 2021. | Series: Sustainable energy trategies: CRC Press, 2020. http://dx.doi.org/10.1201/9781003133094-6.
Pełny tekst źródłaOsborn, Dale. "Wind Power Grid Integration wind power grid integration : Transmission Planning wind power grid integration transmission planning". W Renewable Energy Systems, 1740–68. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5820-3_90.
Pełny tekst źródłaStreszczenia konferencji na temat "Power grid systems"
Das, Saurav, Farzam Aidelkhani, Somir Mustak, A. K. M. Baki i M. A. Razzak. "Grid voltage stabilization for smart grid systems". W 2016 IEEE 7th Power India International Conference (PIICON). IEEE, 2016. http://dx.doi.org/10.1109/poweri.2016.8077343.
Pełny tekst źródłaShama, Farzin. "Adaptive Power System Stabilizer Design For Interconnected Power Systems". W 2018 Smart Grid Conference (SGC). IEEE, 2018. http://dx.doi.org/10.1109/sgc.2018.8777865.
Pełny tekst źródłaMisak, Stanislav, i Lukas Prokop. "Off-grid power systems". W 2010 9th International Conference on Environment and Electrical Engineering. IEEE, 2010. http://dx.doi.org/10.1109/eeeic.2010.5490003.
Pełny tekst źródłaPahwa, S., A. Hodges, C. Scoglio i S. Wood. "Topological analysis of the power grid and mitigation strategies against cascading failures". W 2010 4th Annual IEEE Systems Conference. IEEE, 2010. http://dx.doi.org/10.1109/systems.2010.5482329.
Pełny tekst źródła"Smart Grid Reliability Assessment". W Power and Energy Systems. Calgary,AB,Canada: ACTAPRESS, 2010. http://dx.doi.org/10.2316/p.2010.684-010.
Pełny tekst źródła"Power Systems and Smart Grid". W 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). IEEE, 2019. http://dx.doi.org/10.1109/isie.2019.8781472.
Pełny tekst źródłaNelson, Robert E. "Grid-independent residential power systems". W The 2nd NREL conference on thermophotovoltaic generation of electricity. AIP, 1996. http://dx.doi.org/10.1063/1.49689.
Pełny tekst źródłaLammert, Gustav, Tobias Hess, Maximilian Schmidt, Peter Schegner i Martin Braun. "Dynamic grid support in low voltage grids — fault ride-through and reactive power/voltage support during grid disturbances". W 2014 Power Systems Computation Conference (PSCC). IEEE, 2014. http://dx.doi.org/10.1109/pscc.2014.7038468.
Pełny tekst źródłaJia Li i Keith Corzine. "Development of grid-connected inverters for micro-grid". W 2014 Clemson University Power Systems Conference (PSC). IEEE, 2014. http://dx.doi.org/10.1109/psc.2014.6808102.
Pełny tekst źródłaGeisler, Kenneth I. "A smarter greener power grid". W 2009 Power Systems Conference (PSC). IEEE, 2009. http://dx.doi.org/10.1109/psamp.2009.5262327.
Pełny tekst źródłaRaporty organizacyjne na temat "Power grid systems"
Kroposki, Benjamin. Grid Integration Science, NREL Power Systems Engineering Center. Office of Scientific and Technical Information (OSTI), kwiecień 2017. http://dx.doi.org/10.2172/1354239.
Pełny tekst źródłaStolte, W. PVUSA experience with power conversion for grid-connected photovoltaic systems. Office of Scientific and Technical Information (OSTI), listopad 1995. http://dx.doi.org/10.2172/162188.
Pełny tekst źródłaNajm, Habib, i Cosmin Safta. EGSim - a C++ Toolkit for Analysis of Power Grid Systems. Office of Scientific and Technical Information (OSTI), kwiecień 2019. http://dx.doi.org/10.2172/1762344.
Pełny tekst źródłaGreacen, Chris, Richard Engel i Thomas Quetchenbach. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW. Office of Scientific and Technical Information (OSTI), kwiecień 2013. http://dx.doi.org/10.2172/1171616.
Pełny tekst źródłaRuhl, R. C. Fuel Cell and Reversible Fuel Cell Modules for Grid-Independent Electric Power Systems. Office of Scientific and Technical Information (OSTI), wrzesień 2000. http://dx.doi.org/10.2172/769149.
Pełny tekst źródłaAtcitty, Stanley, i Sarah Hambridge. Multi-Objective Optimization for Power Electronics used in Grid-Tied Energy Storage Systems. Office of Scientific and Technical Information (OSTI), listopad 2014. http://dx.doi.org/10.2172/1762045.
Pełny tekst źródłaNguyen, Ruby, Mike Severson, Bo Zhang, Bjorn Vaagensmith, Md Rahman, Ange-Lionel Toba, Paige Price, Ryan Davis i Sophie Williams. Electric Grid Supply Chain Review: Large Power Transformers and High Voltage Direct Current Systems. Office of Scientific and Technical Information (OSTI), luty 2022. http://dx.doi.org/10.2172/1871501.
Pełny tekst źródłaWills, R. H. The interconnection of photovoltaic power systems with the utility grid: An overview for utility engineers. Office of Scientific and Technical Information (OSTI), czerwiec 1994. http://dx.doi.org/10.2172/10187579.
Pełny tekst źródłaBower, Ward Isaac, Paul Heavener, Lisa Sena-Henderson, Darren Hammell, Mark Holveck, Carolyn David, Abbas Ali Akhil i Sigifredo Gonzalez. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter. Office of Scientific and Technical Information (OSTI), styczeń 2012. http://dx.doi.org/10.2172/1038162.
Pełny tekst źródłaMuelaner, Jody Emlyn. Electric Road Systems for Dynamic Charging. SAE International, marzec 2022. http://dx.doi.org/10.4271/epr2022007.
Pełny tekst źródła