Gotowa bibliografia na temat „Power Electronics and energy conversion”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Power Electronics and energy conversion”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Power Electronics and energy conversion"
Ramya, M. V., G. Ramya, V. Thiruburasundari i N. Ramadevi. "Recent Trends in Power Electronics for Renewable energy Systems". March 2022 4, nr 1 (26.04.2022): 57–64. http://dx.doi.org/10.36548/jeea.2022.1.006.
Pełny tekst źródłaRamya, M. V., G. Ramya, V. Thiruburasundari i N. Ramadevi. "Recent Trends in Power Electronics for Renewable energy Systems". March 2022 4, nr 1 (26.04.2022): 57–64. http://dx.doi.org/10.36548/jeea.2022.1.006.
Pełny tekst źródłaRamya, M. V., G. Ramya, V. Thiruburasundari i N. Ramadevi. "Recent Trends in Power Electronics for Renewable energy Systems". March 2022 4, nr 1 (26.04.2022): 57–64. http://dx.doi.org/10.36548/jeea.2022.1.006.
Pełny tekst źródłaRocha, J. E., i W. D. C. Sanchez. "The Energy Processing by Power Electronics and its Impact on Power Quality". International Journal of Renewable Energy Development 1, nr 3 (3.11.2012): 99. http://dx.doi.org/10.14710/ijred.1.3.99-105.
Pełny tekst źródłaOkundamiya, Michael S. "Power Electronics for Grid Integration of Wind Power Generation System". Journal of Communications Technology, Electronics and Computer Science 9 (27.12.2016): 10. http://dx.doi.org/10.22385/jctecs.v9i0.129.
Pełny tekst źródłaSaponara, Sergio, i Lucian Mihet-Popa. "Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid". Energies 12, nr 4 (19.02.2019): 663. http://dx.doi.org/10.3390/en12040663.
Pełny tekst źródłaKularatna, Nihal, Kasun Subasinghage, Kosala Gunawardane, Dilini Jayananda i Thilanga Ariyarathna. "Supercapacitor-Assisted Techniques and Supercapacitor-Assisted Loss Management Concept: New Design Approaches to Change the Roadmap of Power Conversion Systems". Electronics 10, nr 14 (15.07.2021): 1697. http://dx.doi.org/10.3390/electronics10141697.
Pełny tekst źródłaGedra, T. W., S. An, Q. H. Arsalan i S. Ray. "Unified Power Engineering Laboratory for Electromechanical Energy Conversion, Power Electronics, and Power Systems". IEEE Transactions on Power Systems 19, nr 1 (luty 2004): 112–19. http://dx.doi.org/10.1109/tpwrs.2003.820997.
Pełny tekst źródłaFang, Jian, Xun Gai Wang i Tong Lin. "Power Generation from Randomly Oriented Electrospun Nanofiber Membranes". Advanced Materials Research 479-481 (luty 2012): 340–43. http://dx.doi.org/10.4028/www.scientific.net/amr.479-481.340.
Pełny tekst źródłaMiazga, Tomasz, Grzegorz Iwański i Marcin Nikoniuk. "Energy Conversion System and Control of Fuel-Cell and Battery-Based Hybrid Drive for Light Aircraft". Energies 14, nr 4 (18.02.2021): 1073. http://dx.doi.org/10.3390/en14041073.
Pełny tekst źródłaRozprawy doktorskie na temat "Power Electronics and energy conversion"
Ghosh, Suvradip. "Energy and data conversion circuits for low power sensory systems". Thesis, University of Missouri - Kansas City, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3610195.
Pełny tekst źródłaThis dissertation focuses on the problem of increasing the lifetime of wireless sensors. This problem is addressed from two different angles: energy harvesting and data compression. Energy harvesting enables a sensor to extract energy from its environment and use it to power itself or recharge its batteries. Data compression, on the other hand, allows a sensor to save energy by reducing the radio transmission bandwidth.
This dissertation proposes a fractal-based photodiode fabricated on standard CMOS process as an energy harvesting device with increased efficiency. Experiments show that, the fractal based photodiodes are 6% more efficient compared to the conventional square shaped photodiode. The fractal shape photodiode has more perimeter-to-area ratio which increases the lateral response, improving its efficiency.
With increased efficiency, more current is generated but the open-circuit voltage still remains low (0.3V–0.45V depending on illumination condition). These voltages have to be boosted up to higher values if they are going to be used to power up any sensory circuit or recharge a battery. We propose a switched-inductor DC-DC converter to boost the low voltage of the photodiodes to higher voltages. The proposed circuit uses two on-chip switches and two off-chip Components: an inductor and a capacitor. Experiments show a voltage up to 2.81V can be generated from a single photodiode of 1mm2 area. The voltage booster circuit achieved a conversion efficiency of 59%.
Data compression was also explored in an effort to reduce energy consumption during radio transmission. An analog-to-digital converter (ADC), which can jointly perform the tasks of digital conversion and entropy encoding, has also been proposed in this dissertation. The joint data conversion/compression help savings in area and power resources, making it suitable for on-sensor compression. The proposed converter combines a cyclic converter architecture and Golomb-Rice entropy encoder. The converter hardware design is based on current-mode circuits and it was fabricated on a 0.5 μm CMOS process and tested. Experiment results show a lossless compression ratio of 1.52 and a near-lossless compression of 5.2 can be achieved for 32 × 32 pixel image.
Chen, Zhe. "Advanced wind energy convertors using electronic power conversion". Thesis, Durham University, 1997. http://etheses.dur.ac.uk/1632/.
Pełny tekst źródłaBaltierrez, Jason. "Multiple Input, Single Output DC-DC Conversion Stage for DC House". DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2028.
Pełny tekst źródłaTodeschini, Grazia. "Wind Energy Conversion Systems based on DFIG Technology used as Active Filters: Steady-State and Transient Analysis". Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-dissertations/97.
Pełny tekst źródłaEsmaili, Gholamreza. "Application of advanced power electronics in renewable energy sources and hybrid generating systems". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1141850833.
Pełny tekst źródłaElamalayil, Soman Deepak. "Multilevel Power Converters with Smart Control for Wave Energy Conversion". Doctoral thesis, Uppsala universitet, Elektricitetslära, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-332730.
Pełny tekst źródłaRahimi, Arian. "Design And Implementation Of Low Power Interface Electronics For Vibration-based Electromagnetic Energy Harvesters". Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613820/index.pdf.
Pełny tekst źródła10 Hz), where most vibrations exits. However, since the generated EM power and voltage is relatively low at low frequencies, high performance interface electronics is required for efficiently transferring the generated power from the harvester to the load to be supplied. The aim of this study is to design low power and efficient interface electronics to convert the low voltage and low power generated signals of the EM energy harvesters to DC to be usable by a real application. The most critical part of such interface electronics is the AC/DC converter, since all the other blocks such as DC/DC converters, power managements units, etc. rely on the rectified voltage generated by this block. Due to this, several state-of-the-art rectifier structures suitable for energy harvesting applications have been studied. Most of the previously proposed rectifiers have low conversion efficiency due to the high voltage drop across the utilized diodes. In this study, two rectifier structures are proposed: one is a new passive rectifier using the Boot Strapping technique for reducing the diode turn-on voltage values
the other structure is a comparator-based ultra low power active rectifier. The proposed structures and some of the previously reported designs have been implemented in X-FAB 0.35 µ
m standard CMOS process. The autonomous energy harvesting systems are then realized by integrating the developed ASICs and the previously proposed EM energy harvester modules developed in our research group, and these systems have been characterized under different electromechanical excitation conditions. In this thesis, five different systems utilizing different circuits and energy harvesting modules have been presented. Among these, the system utilizing the novel Boot Strap Rectifier is implemented within a volume of 21 cm3, and delivers 1.6 V, 80 µ
A (128 µ
W) DC power to a load at a vibration frequency of only 2 Hz and 72 mg peak acceleration. The maximum overall power density of the system operating at 2 Hz is 6.1 µ
W/cm3, which is the highest reported value in the literature at this operation frequency. Also, the operation of a commercially available temperature sensor using the provided power of the energy harvester has been shown. Another system utilizing the comparator-based active rectifier implemented with a volume of 16 cm3, has a dual rail output and is able to drive a 1.46 V, 37 µ
A load with a maximum power density of 6.03 µ
W/cm3, operating at 8 Hz. Furthermore, a signal conditioning system for EM energy harvesting has also been designed and simulated in TSMC 90 nm CMOS process. The proposed ASIC includes a highly efficient AC-DC converter as well as a power processing unit which steps up and regulates the converted DC voltages using an on-chip DC/DC converter and a sub-threshold voltage regulator with an ultra low power management unit. The total power consumption on the totally passive IC is less than 5 µ
W, which makes it suitable for next generation MEMS-based EM energy harvesters. In the frame of this study, high efficiency CMOS rectifier ICs have been designed and tested together with several vibration based EM energy harvester modules. The results show that the best efficiency and power density values have been achieved with the proposed energy harvesting systems, within the low frequency range, to the best of our knowledge. It is also shown that further improvement of the results is possible with the utilization of a more advanced CMOS technology.
Liddle, Marshall. "Towards a better wind power map of Nevada". abstract and full text PDF (free order & download UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1453599.
Pełny tekst źródłaDavenport, Tattiana Karina Coleman. "Three-Phase Generation Using Reactive Networks". DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1345.
Pełny tekst źródłaSamir, Karmacharya. "Modelling and control of micro-combined heat and power (CHP) to optimise energy conversion and support power distribution networks". Thesis, Northumbria University, 2013. http://nrl.northumbria.ac.uk/21424/.
Pełny tekst źródłaKsiążki na temat "Power Electronics and energy conversion"
Ioinovici, Adrian. Power electronics and energy conversion systems. Chichester, West Sussex: John Wiley & Sons, 2012.
Znajdź pełny tekst źródłaSimões, M. Godoy, i Felix A. Farret. Modeling Power Electronics and Interfacing Energy Conversion Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119058458.
Pełny tekst źródłaDost, Philip Karl-Heinz. Multi-functional Power Electronics Tailored for Energy Conversion Plants. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-29983-5.
Pełny tekst źródłaSéguier, Guy. Power Electronic Converters: DC-AC Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.
Znajdź pełny tekst źródłaHong, Ye, red. Renewable energy systems: Advanced conversion technologies and applications. Boca Raton, FL: Taylor & Francis, 2012.
Znajdź pełny tekst źródłaFrançois, Béguin, i Frackowiak Elzbieta, red. Carbons for electrochemical energy storage and conversion systems. Boca Raton: Taylor & Francis, 2010.
Znajdź pełny tekst źródłaPower and Energy Conversion Symposium (2nd 2014 Melaka). The 2nd Power and energy conversion symposium (PECS 2014): Sustainable renewable energy development for the future, 12th May 2014, Universiti Teknikal MalaysialMelaka. Redaktorzy Rosli Omar, Prof. Madya, Dr., Ir., editor, Gan, Chin Kim, Dr., editor, Mohamed Azmi Said editor, Musa Yusup Lada editor i Arfah Ahmad editor. Melaka: Penerbit Universiti, Universiti Teknikal Malaysia Melaka, 2014.
Znajdź pełny tekst źródłaKaboli, Shahriyar. Reliability in power electronics and electrical machines: Industrial applications and performance models. Hershey, PA: Engineering Science Reference, 2016.
Znajdź pełny tekst źródła1936-, Secker P. E., red. Industrial electrostatics: Fundamentals and measurements. Taunton, Somerset, England: Research Studies Press, 1994.
Znajdź pełny tekst źródłaFeng li fa dian zhong de dian li dian zi bian liu ji shu: Power electronic converter technology in wind power generation. Beijing Shi: Ji xie gong ye chu ban she, 2008.
Znajdź pełny tekst źródłaCzęści książek na temat "Power Electronics and energy conversion"
Blaabjerg, Frede, i Zhe Chen. "Wind Energy Conversion". W Power Electronics for Modern Wind Turbines, 3–6. Cham: Springer International Publishing, 2006. http://dx.doi.org/10.1007/978-3-031-02494-8_2.
Pełny tekst źródłaRekioua, Djamila. "Wind Energy Conversion and Power Electronics Modeling". W Wind Power Electric Systems, 51–76. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6425-8_2.
Pełny tekst źródłaKouro, Samir, Bin Wu, Haitham Abu-Rub i Frede Blaabjerg. "Photovoltaic Energy Conversion Systems". W Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications, 160–98. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118755525.ch7.
Pełny tekst źródłaDost, Philip Karl-Heinz. "Power Electronic System". W Multi-functional Power Electronics Tailored for Energy Conversion Plants, 59–177. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-29983-5_5.
Pełny tekst źródłaCosta, François, Cyrille Gautier, Eric Labouré i Bertrand Revol. "EMC of Complex Electrical Energy Conversion Systems: Electromagnetic Actuators". W Electromagnetic Compatibility in Power Electronics, 143–206. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118863183.ch3.
Pełny tekst źródłaFuchs, Ewald F., i Mohammad A. S. Masoum. "Power Electronic Converters". W Power Conversion of Renewable Energy Systems, 135–216. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-7979-7_5.
Pełny tekst źródłaBrandão, Danilo Iglesias, i Fernando Pinhabel Marafão. "DIGITAL PROCESSING TECHNIQUES APPLIED TO POWER ELECTRONICS". W Modeling Power Electronics and Interfacing Energy Conversion Systems, 279–320. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119058458.ch12.
Pełny tekst źródłaZhang, Hui, i Haiwen Liu. "Potential Applications and Impact of Most-Recent Silicon Carbide Power Electronics in Wind Turbine Systems". W Wind Energy Conversion Systems, 81–109. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2201-2_4.
Pełny tekst źródłaJin, Hua. "FROM PSIM SIMULATION TO HARDWARE IMPLEMENTATION IN DSP". W Modeling Power Electronics and Interfacing Energy Conversion Systems, 255–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119058458.ch11.
Pełny tekst źródłaFuchs, Ewald F., i Mohammad A. S. Masoum. "Electronic Controllers for Feedback Systems". W Power Conversion of Renewable Energy Systems, 115–34. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-7979-7_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Power Electronics and energy conversion"
Elbuluk, Malik E., i M. David Kankam. "Power Electronics Building Blocks (PEBB) in Aerospace Power Electronic Systems". W 34th Intersociety Energy Conversion Engineering Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-2443.
Pełny tekst źródła"Power electronics and energy conversion". W 2017 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2017. http://dx.doi.org/10.1109/icit.2017.7912589.
Pełny tekst źródła"Power electronics and energy conversion". W IECON 2011 - 37th Annual Conference of IEEE Industrial Electronics. IEEE, 2011. http://dx.doi.org/10.1109/iecon.2011.6119331.
Pełny tekst źródła"Power electronics and energy conversion". W IECON 2012 - 38th Annual Conference of IEEE Industrial Electronics. IEEE, 2012. http://dx.doi.org/10.1109/iecon.2012.6388831.
Pełny tekst źródła"Power electronics and energy conversion". W IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2013. http://dx.doi.org/10.1109/iecon.2013.6699122.
Pełny tekst źródła"Power electronics and energy conversion". W 2013 IEEE International Conference on Industrial Technology (ICIT 2013). IEEE, 2013. http://dx.doi.org/10.1109/icit.2013.6505710.
Pełny tekst źródła"Power electronics and energy conversion". W 2016 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2016. http://dx.doi.org/10.1109/icit.2016.7474754.
Pełny tekst źródła"Power Electronics and Energy Conversion". W 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE). IEEE, 2018. http://dx.doi.org/10.1109/isie.2018.8433815.
Pełny tekst źródła"Power Electronics and Energy Conversion". W 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). IEEE, 2019. http://dx.doi.org/10.1109/isie.2019.8781190.
Pełny tekst źródła"Power Electronics and Energy Conversion". W 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE). IEEE, 2020. http://dx.doi.org/10.1109/isie45063.2020.9152482.
Pełny tekst źródłaRaporty organizacyjne na temat "Power Electronics and energy conversion"
Fowler. L51754 Field Application of Electronic Gas Admission with Cylinder Pressure Feedback for LB Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 1996. http://dx.doi.org/10.55274/r0010363.
Pełny tekst źródłaLyons, Karen S. Emerging Power/Energy Technologies for Portable Electronics for SOCOM. Fort Belvoir, VA: Defense Technical Information Center, luty 2008. http://dx.doi.org/10.21236/ada478532.
Pełny tekst źródłaDruxman, Lee Daniel. Power conversion from environmentally scavenged energy sources. Office of Scientific and Technical Information (OSTI), wrzesień 2007. http://dx.doi.org/10.2172/920810.
Pełny tekst źródłaWaits, C. M. Thermophotovoltaic Energy Conversion for Personal Power Sources. Fort Belvoir, VA: Defense Technical Information Center, luty 2012. http://dx.doi.org/10.21236/ada563073.
Pełny tekst źródłaKizilyalli, Isik C., Eric P. Carlson, Daniel W. Cunningham, Joseph S. Manser, Yanzhi Ann Xu i Alan Y. Liu. Wide Band-Gap Semiconductor Based Power Electronics for Energy Efficiency. Office of Scientific and Technical Information (OSTI), marzec 2018. http://dx.doi.org/10.2172/1464211.
Pełny tekst źródłaOh, C. H. Energy Conversion Advanced Heat Transport Loop and Power Cycle. Office of Scientific and Technical Information (OSTI), sierpień 2006. http://dx.doi.org/10.2172/911672.
Pełny tekst źródłaMekhiche, Mike, Hiz Dufera i Deb Montagna. Advanced, High Power, Next Scale, Wave Energy Conversion Device. Office of Scientific and Technical Information (OSTI), październik 2012. http://dx.doi.org/10.2172/1097434.
Pełny tekst źródłaAtcitty, Stanley, i Sarah Hambridge. Multi-Objective Optimization for Power Electronics used in Grid-Tied Energy Storage Systems. Office of Scientific and Technical Information (OSTI), listopad 2014. http://dx.doi.org/10.2172/1762045.
Pełny tekst źródłaTreanton, B., J. Palomo, B. Kroposki i H. Thomas. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California. Office of Scientific and Technical Information (OSTI), październik 2006. http://dx.doi.org/10.2172/894428.
Pełny tekst źródłaAtcitty, S., A. Gray-Fenner i S. Ranade. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications. Office of Scientific and Technical Information (OSTI), wrzesień 1998. http://dx.doi.org/10.2172/1894.
Pełny tekst źródła