Artykuły w czasopismach na temat „Potentiel machine learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Potentiel machine learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ben Zid, Afef, Asma Najjar i Imen Hamrouni. "Classification automatique d’emprises au sol de maisons dites « andalouses » à l’aide de modèle de Machine Learning". SHS Web of Conferences 203 (2024): 02001. http://dx.doi.org/10.1051/shsconf/202420302001.
Pełny tekst źródłaBOUKHELEF, Faiza. "Investigating Students’ Attitudes Towards Integrating Machine Translation in the EFL Classroom: The case of Google Translate". Langues & Cultures 5, nr 01 (30.06.2024): 264–77. http://dx.doi.org/10.62339/jlc.v5i01.243.
Pełny tekst źródłaNg, Wenfa. "Evaluating the Potential of Applying Machine Learning Tools to Metabolic Pathway Optimization". Biotechnology and Bioprocessing 2, nr 9 (2.11.2021): 01–07. http://dx.doi.org/10.31579/2766-2314/060.
Pełny tekst źródłaDatta, Debaleena, Pradeep Kumar Mallick, Akash Kumar Bhoi, Muhammad Fazal Ijaz, Jana Shafi i Jaeyoung Choi. "Hyperspectral Image Classification: Potentials, Challenges, and Future Directions". Computational Intelligence and Neuroscience 2022 (28.04.2022): 1–36. http://dx.doi.org/10.1155/2022/3854635.
Pełny tekst źródłaSrinivasaiah, Bharath. "The Power of Personalized Healthcare: Harnessing the Potential of Machine Learning in Precision Medicine". International Journal of Science and Research (IJSR) 13, nr 5 (5.05.2024): 426–29. http://dx.doi.org/10.21275/sr24506012313.
Pełny tekst źródłaKamoun-Abid, Ferdaous, Hounaida Frikha, Amel Meddeb-Makhoulf i Faouzi Zarai. "Automating cloud virtual machines allocation via machine learning". Indonesian Journal of Electrical Engineering and Computer Science 35, nr 1 (1.07.2024): 191. http://dx.doi.org/10.11591/ijeecs.v35.i1.pp191-202.
Pełny tekst źródłaShoureshi, R., D. Swedes i R. Evans. "Learning Control for Autonomous Machines". Robotica 9, nr 2 (kwiecień 1991): 165–70. http://dx.doi.org/10.1017/s0263574700010201.
Pełny tekst źródłaAschepkov, Valeriy. "METHODS OF MACHINE LEARNING IN MODERN METROLOGY". Measuring Equipment and Metrology 85 (2024): 57–60. http://dx.doi.org/10.23939/istcmtm2024.01.057.
Pełny tekst źródłaLevantesi, Susanna, Andrea Nigri i Gabriella Piscopo. "Longevity risk management through Machine Learning: state of the art". Insurance Markets and Companies 11, nr 1 (25.11.2020): 11–20. http://dx.doi.org/10.21511/ins.11(1).2020.02.
Pełny tekst źródłaShak, Md Shujan, Aftab Uddin, Md Habibur Rahman, Nafis Anjum, Md Nad Vi Al Bony, Murshida Alam, Mohammad Helal, Afrina Khan, Pritom Das i Tamanna Pervin. "INNOVATIVE MACHINE LEARNING APPROACHES TO FOSTER FINANCIAL INCLUSION IN MICROFINANCE". International Interdisciplinary Business Economics Advancement Journal 05, nr 11 (6.11.2024): 6–20. http://dx.doi.org/10.55640/business/volume05issue11-02.
Pełny tekst źródłaHossain, Nur, Nafis Anjum, Murshida Alam, Md Habibur Rahman, Md Siam Taluckder, Md Nad Vi Al Bony, S. M. Shadul Islam Rishad i Afrin Hoque Jui. "PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR LUNG CANCER PREDICTION: A COMPARATIVE STUDY". International Journal of Medical Science and Public Health Research 05, nr 11 (14.11.2024): 41–55. http://dx.doi.org/10.37547/ijmsphr/volume05issue11-05.
Pełny tekst źródłaLyu, Nian. "The prospect and metaphysical analysis of conscious artificial intelligence". Applied and Computational Engineering 77, nr 1 (16.07.2024): 32–36. http://dx.doi.org/10.54254/2755-2721/77/20240632.
Pełny tekst źródłaKeneskyzy, K., i S. B. Yeskermes. "Метод машинного обучения для обратных задач теплопроводности". INTERNATIONAL JOURNAL OF INFORMATION AND COMMUNICATION TECHNOLOGIES 2, nr 1(5) (26.03.2021): 59–64. http://dx.doi.org/10.54309/ijict.2021.05.1.008.
Pełny tekst źródłaYang, Yinuo, Shuhao Zhang, Kavindri D. Ranasinghe, Olexandr Isayev i Adrian E. Roitberg. "Machine Learning of Reactive Potentials". Annual Review of Physical Chemistry 75, nr 1 (28.06.2024): 371–95. http://dx.doi.org/10.1146/annurev-physchem-062123-024417.
Pełny tekst źródłaShi, Yang. "Research on the Stock Price Prediction Using Machine Learning". Advances in Economics, Management and Political Sciences 22, nr 1 (13.09.2023): 174–79. http://dx.doi.org/10.54254/2754-1169/22/20230307.
Pełny tekst źródłaMueller, Tim, Alberto Hernandez i Chuhong Wang. "Machine learning for interatomic potential models". Journal of Chemical Physics 152, nr 5 (7.02.2020): 050902. http://dx.doi.org/10.1063/1.5126336.
Pełny tekst źródłaShih, David, Matthew R. Buckley, Lina Necib i John Tamanas. "via machinae: Searching for stellar streams using unsupervised machine learning". Monthly Notices of the Royal Astronomical Society 509, nr 4 (24.11.2021): 5992–6007. http://dx.doi.org/10.1093/mnras/stab3372.
Pełny tekst źródłaSamahitha Kaliyuru Ravi, Sameera Kaliyuru Ravi i A. Hema Prabha. "Advent of machine learning in autonomous vehicles". International Journal of Science and Research Archive 13, nr 1 (30.09.2024): 1219–26. http://dx.doi.org/10.30574/ijsra.2024.13.1.1760.
Pełny tekst źródłaAbro, Safdar Ali, Lyu Guang Hua, Javed Ahmed Laghari, Muhammad Akram Bhayo i Abdul Aziz Memon. "Machine learning-based electricity theft detection using support vector machines". International Journal of Electrical and Computer Engineering (IJECE) 14, nr 2 (1.04.2024): 1240. http://dx.doi.org/10.11591/ijece.v14i2.pp1240-1250.
Pełny tekst źródłaRamesh, Banoth, G. Srinivas, P. Ram Praneeth Reddy, M. D. Huraib Rasool, Divya Rawat i Madhulita Sundaray. "Feasible Prediction of Multiple Diseases using Machine Learning". E3S Web of Conferences 430 (2023): 01051. http://dx.doi.org/10.1051/e3sconf/202343001051.
Pełny tekst źródłaNagaraju, Dr R. "XSS Attack Detection using Machine Learning Algorithms". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 07, nr 12 (1.12.2023): 1–11. http://dx.doi.org/10.55041/ijsrem27487.
Pełny tekst źródłaKayathri, K., i Dr K. Kavitha. "CGSX Ensemble: An Integrative Machine Learning and Deep Learning Approach for Improved Diabetic Retinopathy Classification". International Journal of Electrical and Electronics Research 12, nr 2 (28.06.2024): 669–81. http://dx.doi.org/10.37391/ijeer.120245.
Pełny tekst źródłaLi, Keqin, Peng Zhao, Shuying Dai, Armando Zhu, Bo Hong, Jiabei Liu, Changsong Wei, Wenqian Huang i Yang Zhang. "Exploring the Impact of Quantum Computing on Machine Learning Performance". Middle East Journal of Applied Science & Technology 07, nr 02 (2024): 145–61. http://dx.doi.org/10.46431/mejast.2024.7215.
Pełny tekst źródłaChinnala Balakrishna i Rambabu Bommisetti. "Detecting psychological uncertainty using machine learning". International Journal of Science and Research Archive 12, nr 2 (30.07.2024): 1365–70. http://dx.doi.org/10.30574/ijsra.2024.12.2.1399.
Pełny tekst źródłaNivas, K., M. Rajesh Kumar, G. Suresh, T. Ramaswamy i Yerraboina Sreenivasulu. "Facial Emotion Detection Using Deep Learning". International Journal for Research in Applied Science and Engineering Technology 11, nr 1 (31.01.2023): 427–33. http://dx.doi.org/10.22214/ijraset.2023.48585.
Pełny tekst źródłaWilliam, Carter, Choki Wangmo i Anjali Ranjan. "Unravelling the application of machine learning in cancer biomarker discovery". Cancer Insight 2, nr 1 (14.06.2023): 1–8. http://dx.doi.org/10.58567/ci02010001.
Pełny tekst źródłaPatil, Rohit, Priyadarshani Alandikar, Vaibhav Chaudhari, Pradnya Patil i Prof Swarupa Deshpande. "Water Demand Prediction Using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 10, nr 12 (31.12.2022): 122–28. http://dx.doi.org/10.22214/ijraset.2022.47797.
Pełny tekst źródłaAkrom, Muhamad. "Quantum Support Vector Machine for Classification Task: A Review". Journal of Multiscale Materials Informatics 1, nr 2 (5.07.2024): 1–8. http://dx.doi.org/10.62411/jimat.v1i2.10965.
Pełny tekst źródłaPatil, Bhagyashree A., Sri Adithya S i Dr Jayanthi M G. "Detection of Malware using Machine Learning Approach". International Journal for Research in Applied Science and Engineering Technology 11, nr 8 (31.08.2023): 736–41. http://dx.doi.org/10.22214/ijraset.2023.55233.
Pełny tekst źródłaSahoo, Abhilipsa, i Kaushika Patel. "Machine Learning-based Inverse Design Model of a Transistor". Indian Journal Of Science And Technology 17, nr 7 (15.02.2024): 617–24. http://dx.doi.org/10.17485/ijst/v17i7.3076.
Pełny tekst źródłaTiffin, Paul A., i Lewis W. Paton. "Rise of the machines? Machine learning approaches and mental health: opportunities and challenges". British Journal of Psychiatry 213, nr 3 (16.08.2018): 509–10. http://dx.doi.org/10.1192/bjp.2018.105.
Pełny tekst źródłaChoudhary, Laxmi, i Jitendra Singh Choudhary. "Deep Learning Meets Machine Learning: A Synergistic Approach towards Artificial Intelligence". Journal of Scientific Research and Reports 30, nr 11 (16.11.2024): 865–75. http://dx.doi.org/10.9734/jsrr/2024/v30i112614.
Pełny tekst źródłaPei, Jun, Lin Frank Song i Kenneth M. Merz. "Pair Potentials as Machine Learning Features". Journal of Chemical Theory and Computation 16, nr 8 (19.06.2020): 5385–400. http://dx.doi.org/10.1021/acs.jctc.9b01246.
Pełny tekst źródłaKobayashi, Keita, Hiroki Nakamura, Akiko Yamaguchi, Mitsuhiro Itakura, Masahiko Machida i Masahiko Okumura. "Machine learning potentials for tobermorite minerals". Computational Materials Science 188 (luty 2021): 110173. http://dx.doi.org/10.1016/j.commatsci.2020.110173.
Pełny tekst źródłaBarbour, Dennis L., i Jan-Willem A. Wasmann. "Performance and Potential of Machine Learning Audiometry". Hearing Journal 74, nr 3 (26.02.2021): 40,43,44. http://dx.doi.org/10.1097/01.hj.0000737592.24476.88.
Pełny tekst źródłaTherrien, Audrey C., Berthié Gouin-Ferland i Mohammad Mehdi Rahimifar. "Potential of edge machine learning for instrumentation". Applied Optics 61, nr 8 (2.03.2022): 1930. http://dx.doi.org/10.1364/ao.445798.
Pełny tekst źródłaAwan, Kamran H., S. Satish Kumar i Indu Bharkavi SK. "Potential Role of Machine Learning in Oncology". Journal of Contemporary Dental Practice 20, nr 5 (2019): 529–30. http://dx.doi.org/10.5005/jp-journals-10024-2551.
Pełny tekst źródłaDral, Pavlo O., Alec Owens, Alexey Dral i Gábor Csányi. "Hierarchical machine learning of potential energy surfaces". Journal of Chemical Physics 152, nr 20 (29.05.2020): 204110. http://dx.doi.org/10.1063/5.0006498.
Pełny tekst źródłaWu, Yuexiang. "Potential pulsars prediction based on machine learning". Theoretical and Natural Science 12, nr 1 (17.11.2023): 193–201. http://dx.doi.org/10.54254/2753-8818/12/20230466.
Pełny tekst źródłaZhou, Ziyun, Jingwei Shang i Yimang Li. "Enhancing Efficiency in Hierarchical Reinforcement Learning through Topological-Sorted Potential Calculation". Electronics 12, nr 17 (1.09.2023): 3700. http://dx.doi.org/10.3390/electronics12173700.
Pełny tekst źródłaLi, Jiarui. "Evaluative Comparison of Machine Learning Algorithms for Precision Diagnosis in Breast Cancer". Highlights in Science, Engineering and Technology 85 (13.03.2024): 354–62. http://dx.doi.org/10.54097/40fmfw48.
Pełny tekst źródłaØsterlund, Carsten, Kevin Crowston, Corey B. Jackson, Yunan Wu, Alexander O. Smith i Aggelos K. Katsaggelos. "Supporting Human and Machine Co-Learning in Citizen Science: Lessons From Gravity Spy". Citizen Science: Theory and Practice 9, nr 1 (9.12.2024): 42. https://doi.org/10.5334/cstp.738.
Pełny tekst źródłaM, Senthil Raja, Arun Raj L i Arun A. "Detection of Depression among Social Media Users with Machine Learning". Webology 19, nr 1 (20.01.2022): 250–57. http://dx.doi.org/10.14704/web/v19i1/web19019.
Pełny tekst źródłaD. Nageswara Rao. "Predictive Modeling of Breast Cancer Outcomes Using Supervised Machine Learning Algorithms". International Journal of Scientific Research in Computer Science, Engineering and Information Technology 10, nr 4 (15.08.2024): 258–66. http://dx.doi.org/10.32628/cseit2410416.
Pełny tekst źródłaSilva, Nuno A., Vicente Rocha i Tiago D. Ferreira. "Optical Extreme Learning Machines with Atomic Vapors". Atoms 12, nr 2 (6.02.2024): 10. http://dx.doi.org/10.3390/atoms12020010.
Pełny tekst źródłaSumathi, P., Arun Kumar S i Balaji A. "Healthcare - Autism Predicting Tool Using Data Science / AI / ML". International Journal for Research in Applied Science and Engineering Technology 12, nr 5 (31.05.2024): 440–43. http://dx.doi.org/10.22214/ijraset.2024.60421.
Pełny tekst źródłaHossain, Md Shakhaowat, S. M. Shadul Islam Rishad, Md Mohibur Rahman, Sanjida Akter Tisha, Farhan Shakil, Ashim Chandra Das, Radha Das i Sadia Sultana. "MACHINE LEARNING FOR STOCK MARKET SECURITY MEASUREMENT: A COMPARATIVE ANALYSIS OF SUPERVISED, UNSUPERVISED, AND DEEP LEARNING MODELS". International journal of networks and security 04, nr 01 (22.11.2024): 22–32. http://dx.doi.org/10.55640/ijns-04-01-06.
Pełny tekst źródłaGittler, Thomas, Stephan Scholze, Alisa Rupenyan i Konrad Wegener. "Machine Tool Component Health Identification with Unsupervised Learning". Journal of Manufacturing and Materials Processing 4, nr 3 (2.09.2020): 86. http://dx.doi.org/10.3390/jmmp4030086.
Pełny tekst źródłaAdewusi, Michael Adelani, Adeshina Wasiu Adebanjo, Tokunbo Odekeye i Sophia Kazibwe. "Rise of the Machines: Exploring the Emergence of Machine Consciousness". European Journal of Theoretical and Applied Sciences 2, nr 4 (1.07.2024): 563–73. http://dx.doi.org/10.59324/ejtas.2024.2(4).48.
Pełny tekst źródłaHidayat, Taufik, Kalamullah Ramli, Nadia Thereza, Amarudin Daulay, Rushendra Rushendra i Rahutomo Mahardiko. "Machine Learning to Estimate Workload and Balance Resources with Live Migration and VM Placement". Informatics 11, nr 3 (19.07.2024): 50. http://dx.doi.org/10.3390/informatics11030050.
Pełny tekst źródła