Artykuły w czasopismach na temat „Potential Scaffolds”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Potential Scaffolds”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chernonosova, Vera, Marianna Khlebnikova, Victoriya Popova, Ekaterina Starostina, Elena Kiseleva, Boris Chelobanov, Ren Kvon, Elena Dmitrienko i Pavel Laktionov. "Electrospun Scaffolds Enriched with Nanoparticle-Associated DNA: General Properties, DNA Release and Cell Transfection". Polymers 15, nr 15 (27.07.2023): 3202. http://dx.doi.org/10.3390/polym15153202.
Pełny tekst źródłaD’Amato, Anthony R., Michael T. K. Bramson, David T. Corr, Devan L. Puhl, Ryan J. Gilbert i Jed Johnson. "Solvent Retention in Electrospun Fibers Affects Scaffold Mechanical Properties". Electrospinning 2, nr 1 (1.09.2018): 15–28. http://dx.doi.org/10.1515/esp-2018-0002.
Pełny tekst źródłaKorpershoek, Jasmijn V., Mylène de Ruijter, Bastiaan F. Terhaard, Michella H. Hagmeijer, Daniël B. F. Saris, Miguel Castilho, Jos Malda i Lucienne A. Vonk. "Potential of Melt Electrowritten Scaffolds Seeded with Meniscus Cells and Mesenchymal Stromal Cells". International Journal of Molecular Sciences 22, nr 20 (18.10.2021): 11200. http://dx.doi.org/10.3390/ijms222011200.
Pełny tekst źródłaIqbal, Neelam, Thomas Michael Braxton, Antonios Anastasiou, El Mostafa Raif, Charles Kai Yin Chung, Sandeep Kumar, Peter V. Giannoudis i Animesh Jha. "Dicalcium Phosphate Dihydrate Mineral Loaded Freeze-Dried Scaffolds for Potential Synthetic Bone Applications". Materials 15, nr 18 (8.09.2022): 6245. http://dx.doi.org/10.3390/ma15186245.
Pełny tekst źródłaAhmad Hariza, Ahmad Mus’ab, Mohd Heikal Mohd Yunus, Mh Busra Fauzi, Jaya Kumar Murthy, Yasuhiko Tabata i Yosuke Hiraoka. "The Fabrication of Gelatin–Elastin–Nanocellulose Composite Bioscaffold as a Potential Acellular Skin Substitute". Polymers 15, nr 3 (3.02.2023): 779. http://dx.doi.org/10.3390/polym15030779.
Pełny tekst źródłaLari, Alireza, Tao Sun i Naznin Sultana. "PEDOT:PSS-Containing Nanohydroxyapatite/Chitosan Conductive Bionanocomposite Scaffold: Fabrication and Evaluation". Journal of Nanomaterials 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/9421203.
Pełny tekst źródłaToullec, Clément, Jean Le Bideau, Valerie Geoffroy, Boris Halgand, Nela Buchtova, Rodolfo Molina-Peña, Emmanuel Garcion i in. "Curdlan–Chitosan Electrospun Fibers as Potential Scaffolds for Bone Regeneration". Polymers 13, nr 4 (10.02.2021): 526. http://dx.doi.org/10.3390/polym13040526.
Pełny tekst źródłaMinden-Birkenmaier, Benjamin A., Rachel M. Neuhalfen, Blythe E. Janowiak i Scott A. Sell. "Preliminary Investigation and Characterization of Electrospun Polycaprolactone and Manuka Honey Scaffolds for Dermal Repair". Journal of Engineered Fibers and Fabrics 10, nr 4 (grudzień 2015): 155892501501000. http://dx.doi.org/10.1177/155892501501000406.
Pełny tekst źródłaDeng, Xu Liang, M. M. Xu, Dan Li, Gang Sui, X. Y. Hu i Xiao Ping Yang. "Electrospun PLLA/MWNTs/HA Hybrid Nanofiber Scaffolds and Their Potential in Dental Tissue Engineering". Key Engineering Materials 330-332 (luty 2007): 393–96. http://dx.doi.org/10.4028/www.scientific.net/kem.330-332.393.
Pełny tekst źródłaJain, Shubham, Mohammed Ahmad Yassin, Tiziana Fuoco, Hailong Liu, Samih Mohamed-Ahmed, Kamal Mustafa i Anna Finne-Wistrand. "Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification". Journal of Tissue Engineering 11 (styczeń 2020): 204173142095431. http://dx.doi.org/10.1177/2041731420954316.
Pełny tekst źródłaHung, Kuo-Sheng, May-Show Chen, Wen-Chien Lan, Yung-Chieh Cho, Takashi Saito, Bai-Hung Huang, Hsin-Yu Tsai, Chia-Chien Hsieh, Keng-Liang Ou i Hung-Yang Lin. "Three-Dimensional Printing of a Hybrid Bioceramic and Biopolymer Porous Scaffold for Promoting Bone Regeneration Potential". Materials 15, nr 5 (7.03.2022): 1971. http://dx.doi.org/10.3390/ma15051971.
Pełny tekst źródłaZhao, Min Li, Gang Sui, Xu Liang Deng, Ji Gui Lu, Seung Kon Ryu i Xiao Ping Yang. "PLLA/HA Electrospin Hybrid Nanofiber Scaffolds: Morphology, In Vitro Degradation and Cell Culture Potential". Advanced Materials Research 11-12 (luty 2006): 243–46. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.243.
Pełny tekst źródłaKosorn, Wasana, i Patcharaporn Wutticharoenmongkol. "Poly(ε-caprolactone)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Blend from Fused Deposition Modeling as Potential Cartilage Scaffolds". International Journal of Polymer Science 2021 (22.03.2021): 1–18. http://dx.doi.org/10.1155/2021/6689789.
Pełny tekst źródłaRibas, Montanheiro, Montagna, Prado, Campos i Thim. "Water Uptake in PHBV/Wollastonite Scaffolds: A Kinetics Study". Journal of Composites Science 3, nr 3 (16.07.2019): 74. http://dx.doi.org/10.3390/jcs3030074.
Pełny tekst źródłaZarei, Moein, Nader Tanideh, Shahrokh Zare, Fatemeh Sari Aslani, Omid Koohi-Hosseinabadi, Rajendran Muthuraj, Iman Jamhiri, Aida Rowshanghias i Pouyan Mehryar. "Preparation and performance evaluation of electrospun poly(3-hydroxybutyrate) composite scaffolds as a potential hard tissue engineering application". Journal of Bioactive and Compatible Polymers 34, nr 4-5 (lipiec 2019): 386–400. http://dx.doi.org/10.1177/0883911519875984.
Pełny tekst źródłaWahl, Elizabeth A., Fernando A. Fierro, Thomas R. Peavy, Ursula Hopfner, Julian F. Dye, Hans-Günther Machens, José T. Egaña i Thilo L. Schenck. "In VitroEvaluation of Scaffolds for the Delivery of Mesenchymal Stem Cells to Wounds". BioMed Research International 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/108571.
Pełny tekst źródłaChannasanon, Somruethai, Pareeya Udomkusonsri, Surapol Chantaweroad, Passakorn Tesavibul i Siriporn Tanodekaew. "Gentamicin Released from Porous Scaffolds Fabricated by Stereolithography". Journal of Healthcare Engineering 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/9547896.
Pełny tekst źródłaChen, Cheng-Yu, Ming-You Shie, Alvin Kai-Xing Lee, Yun-Ting Chou, Chun Chiang i Chun-Pin Lin. "3D-Printed Ginsenoside Rb1-Loaded Mesoporous Calcium Silicate/Calcium Sulfate Scaffolds for Inflammation Inhibition and Bone Regeneration". Biomedicines 9, nr 8 (28.07.2021): 907. http://dx.doi.org/10.3390/biomedicines9080907.
Pełny tekst źródłaLongo, Umile Giuseppe, Alfredo Lamberti, Stefano Petrillo, Nicola Maffulli i Vincenzo Denaro. "Scaffolds in Tendon Tissue Engineering". Stem Cells International 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/517165.
Pełny tekst źródłaGelain, Fabrizio, Andrea Lomander, Angelo L. Vescovi i Shuguang Zhang. "Systematic Studies of a Self-Assembling Peptide Nanofiber Scaffold with Other Scaffolds". Journal of Nanoscience and Nanotechnology 7, nr 2 (1.02.2007): 424–34. http://dx.doi.org/10.1166/jnn.2007.154.
Pełny tekst źródłaKwan, Haowen, Emanuele Chisari i Wasim S. Khan. "Cell-Free Scaffolds as a Monotherapy for Focal Chondral Knee Defects". Materials 13, nr 2 (9.01.2020): 306. http://dx.doi.org/10.3390/ma13020306.
Pełny tekst źródłaCassimjee, Henna, Pradeep Kumar, Philemon Ubanako i Yahya E. Choonara. "Genipin-Crosslinked, Proteosaccharide Scaffolds for Potential Neural Tissue Engineering Applications". Pharmaceutics 14, nr 2 (18.02.2022): 441. http://dx.doi.org/10.3390/pharmaceutics14020441.
Pełny tekst źródłaMcManus, Michael C., Scott A. Sell, Whitney C. Bowen, Harry P. Koo, David G. Simpson i Gary L. Bowlin. "Electrospun Fibrinogen-Polydioxanone Composite Matrix: Potential for in Situ Urologic Tissue Engineering". Journal of Engineered Fibers and Fabrics 3, nr 2 (czerwiec 2008): 155892500800300. http://dx.doi.org/10.1177/155892500800300204.
Pełny tekst źródłaHeo, S. J., S. E. Kim, Yong Taek Hyun, D. H. Kim, Hyang Mi Lee, Yeong Maw Hwang, S. A. Park i Jung Woog Shin. "In Vitro Evaluation of Poly ε-Caprolactone/Hydroxyapatite Composite as Scaffolds for Bone Tissue Engineering with Human Bone Marrow Stromal Cells". Key Engineering Materials 342-343 (lipiec 2007): 369–72. http://dx.doi.org/10.4028/www.scientific.net/kem.342-343.369.
Pełny tekst źródłaMad Jin, Rashid, Naznin Sultana, Sayang Baba, Salehhuddin Hamdan i Ahmad Fauzi Ismail. "Porous PCL/Chitosan and nHA/PCL/Chitosan Scaffolds for Tissue Engineering Applications: Fabrication and Evaluation". Journal of Nanomaterials 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/357372.
Pełny tekst źródłaWang, He Yun, Ya Kai Feng, Hai Yang Zhao, Ruo Fang Xiao i Jin Tang Guo. "Biomimetic Hemocompatible Nanofibrous Scaffolds as Potential Small-Diameter Blood Vessels by Bilayering Electrospun Technique". Advanced Materials Research 306-307 (sierpień 2011): 1627–30. http://dx.doi.org/10.4028/www.scientific.net/amr.306-307.1627.
Pełny tekst źródłaMarsudi, Maradhana Agung, Ridhola Tri Ariski, Arie Wibowo, Glen Cooper, Anggraini Barlian, Riska Rachmantyo i Paulo J. D. S. Bartolo. "Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives". International Journal of Molecular Sciences 22, nr 21 (26.10.2021): 11543. http://dx.doi.org/10.3390/ijms222111543.
Pełny tekst źródłaMadike, Lerato N., M. Pillay i Ketul C. Popat. "In Vitro Cell Adhesion, Proliferation and Differentiation of Adipose Derived Stem Cells on Tulbaghia violacea Loaded Polycaprolactone (PCL) Nanofibers". Journal of Biomaterials and Tissue Engineering 9, nr 11 (1.11.2019): 1485–98. http://dx.doi.org/10.1166/jbt.2019.2184.
Pełny tekst źródłaVigneswari, Sevakumaran, Tana Poorani Gurusamy, Wan M. Khairul, Abdul Khalil H.P.S., Seeram Ramakrishna i Al-Ashraf Abdullah Amirul. "Surface Characterization and Physiochemical Evaluation of P(3HB-co-4HB)-Collagen Peptide Scaffolds with Silver Sulfadiazine as Antimicrobial Agent for Potential Infection-Resistance Biomaterial". Polymers 13, nr 15 (26.07.2021): 2454. http://dx.doi.org/10.3390/polym13152454.
Pełny tekst źródłaHaider, Adnan, Kailash Chandra Gupta i Inn-Kyu Kang. "Morphological Effects of HA on the Cell Compatibility of Electrospun HA/PLGA Composite Nanofiber Scaffolds". BioMed Research International 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/308306.
Pełny tekst źródłaCristescu, Ioan, Lucian Marina, Daniel Vilcioiu, F. Safta, M. Istodorescu i A. Stere. "The Potential of Antibiotic Collagen Based Biocomposites for the Treatment of Bone Defects". Key Engineering Materials 587 (listopad 2013): 404–11. http://dx.doi.org/10.4028/www.scientific.net/kem.587.404.
Pełny tekst źródłaYuan, Tony T., Phillip M. Jenkins, Ann Marie DiGeorge Foushee, Angela R. Jockheck-Clark i Jonathan M. Stahl. "Electrospun Chitosan/Polyethylene Oxide Nanofibrous Scaffolds with Potential Antibacterial Wound Dressing Applications". Journal of Nanomaterials 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/6231040.
Pełny tekst źródłaPhanny, Yos, i Mitsugu Todo. "Development and Characterization of Poly(ε-caprolactone) Reinforced Porous Hydroxyapatite for Bone Tissue Engineering". Key Engineering Materials 529-530 (listopad 2012): 447–52. http://dx.doi.org/10.4028/www.scientific.net/kem.529-530.447.
Pełny tekst źródłaSukpaita, Teerawat, Suwabun Chirachanchai, Theerapat Chanamuangkon, Katanchalee Nampuksa, Naruporn Monmaturapoj, Piyamas Sumrejkanchanakij, Atiphan Pimkhaokham i Ruchanee Salingcarnboriboon Ampornaramveth. "Novel Epigenetic Modulation Chitosan-Based Scaffold as a Promising Bone Regenerative Material". Cells 11, nr 20 (13.10.2022): 3217. http://dx.doi.org/10.3390/cells11203217.
Pełny tekst źródłaFan, Hui, Junfeng Hui, Zhiguang Duan, Daidi Fan, Yu Mi, Jianjun Deng i Hui Li. "Novel Scaffolds Fabricated Using Oleuropein for Bone Tissue Engineering". BioMed Research International 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/652432.
Pełny tekst źródłaDemir, Didem, Seda Ceylan, Gülşah Gül, Zeynep İyigündoğdu i Nimet Bölgen. "Green synthesized silver nanoparticles loaded PVA/Starch cryogel scaffolds with antibacterial properties". Tehnički glasnik 13, nr 1 (23.03.2019): 1–6. http://dx.doi.org/10.31803/tg-20180131161141.
Pełny tekst źródłaJohnson, Daniel. "A Warning Label for Scaffold Users". Proceedings of the Human Factors Society Annual Meeting 36, nr 8 (październik 1992): 611–15. http://dx.doi.org/10.1518/107118192786750999.
Pełny tekst źródłaHyun, Yong Taek, Seung Eon Kim, S. J. Heo i Jung Woog Shin. "Characterization of PCL/HA Composite Scaffolds for Bone Tissue Engineering". Key Engineering Materials 342-343 (lipiec 2007): 109–12. http://dx.doi.org/10.4028/www.scientific.net/kem.342-343.109.
Pełny tekst źródłaKe, Yu, Gang Wu i Yingjun Wang. "PHBV/PAM Scaffolds with Local Oriented Structure through UV Polymerization for Tissue Engineering". BioMed Research International 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/157987.
Pełny tekst źródłaPrasadh, Somasundaram, Santhosh Suresh i Raymond Wong. "Osteogenic Potential of Graphene in Bone Tissue Engineering Scaffolds". Materials 11, nr 8 (14.08.2018): 1430. http://dx.doi.org/10.3390/ma11081430.
Pełny tekst źródłaYuan, Su Wen, Jacinta Santhanam, Shiow Fern Ng i B. Hemabarathy Bharatham. "Vancomycin Loaded Alginate/Cockle Shell Powder Nanobiocomposite Bone Scaffold for Antibacterial and Drug Release Evaluation". Sains Malaysiana 50, nr 8 (31.08.2021): 2309–18. http://dx.doi.org/10.17576/jsm-2021-5008-14.
Pełny tekst źródłaHe, Yun, Hong Lan, Juan Liu i Ling Guo. "The Preparation and Properties of Porous Scaffold Made of Nano-Hydroxyapatite/Polyamide66". Advanced Materials Research 690-693 (maj 2013): 490–93. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.490.
Pełny tekst źródłaMajidnia, Elahe, Noushin Amirpour, Mehdi Ahmadian, Fereshteh Karamali i Hossein Salehi. "The Effect of Aligned and Random PCL-Human Amniotic Membrane Powder Scaffolds on Retinal Tissue Engineering". Advances in Materials Science and Engineering 2023 (3.01.2023): 1–11. http://dx.doi.org/10.1155/2023/6377399.
Pełny tekst źródłaLu, Hongyun, Keqin Ying, Ying Shi, Donghong Liu i Qihe Chen. "Bioprocessing by Decellularized Scaffold Biomaterials in Cultured Meat: A Review". Bioengineering 9, nr 12 (9.12.2022): 787. http://dx.doi.org/10.3390/bioengineering9120787.
Pełny tekst źródłaChoi, Dong Jin, Kyoung Choi, Sang Jun Park, Young-Jin Kim, Seok Chung i Chun-Ho Kim. "Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering". International Journal of Molecular Sciences 22, nr 21 (27.10.2021): 11600. http://dx.doi.org/10.3390/ijms222111600.
Pełny tekst źródłaLi, Yanhong, Jing Wang, Yuliang Wang, Wenjia Du i Shuanke Wang. "Transplantation of copper-doped calcium polyphosphate scaffolds combined with copper (II) preconditioned bone marrow mesenchymal stem cells for bone defect repair". Journal of Biomaterials Applications 32, nr 6 (styczeń 2018): 738–53. http://dx.doi.org/10.1177/0885328217739456.
Pełny tekst źródłaDi Filippo, Maria Francesca, Sofia Amadori, Sonia Casolari, Adriana Bigi, Luisa Stella Dolci i Silvia Panzavolta. "Cylindrical Layered Bone Scaffolds with Anisotropic Mechanical Properties as Potential Drug Delivery Systems". Molecules 24, nr 10 (19.05.2019): 1931. http://dx.doi.org/10.3390/molecules24101931.
Pełny tekst źródłaLi, Wei Hong. "Fabrication of PLGA/MWNTs/HA Scaffolds for Biomedical Application". Applied Mechanics and Materials 395-396 (wrzesień 2013): 15–19. http://dx.doi.org/10.4028/www.scientific.net/amm.395-396.15.
Pełny tekst źródłaNursatya, Safira Meidina, Anggraini Barlian, Hermawan Judawisastra, Indra Wibowo i Hutomo Tanoto. "Fibroin and Spidroin Thin Film to Support the Attachment and Spread of Human Dermal Fibroblast: The Potency of Skin Tissue Engineering". Journal of Mathematical and Fundamental Sciences 53, nr 2 (21.10.2021): 323–40. http://dx.doi.org/10.5614/j.math.fund.sci.2021.53.2.10.
Pełny tekst źródłaLim, Siew Shee, Choon Lai Chiang, Nurzulaikha Rosli i Kit Wayne Chew. "Functionalization of Chitosan-TiO<sub>2</sub> Nanotubes Scaffolds with Fibronectin for Bone Regeneration". Journal of Biomimetics, Biomaterials and Biomedical Engineering 61 (31.07.2023): 51–57. http://dx.doi.org/10.4028/p-k9wk3t.
Pełny tekst źródła