Gotowa bibliografia na temat „Potential Scaffolds”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Potential Scaffolds”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Potential Scaffolds"
Chernonosova, Vera, Marianna Khlebnikova, Victoriya Popova, Ekaterina Starostina, Elena Kiseleva, Boris Chelobanov, Ren Kvon, Elena Dmitrienko i Pavel Laktionov. "Electrospun Scaffolds Enriched with Nanoparticle-Associated DNA: General Properties, DNA Release and Cell Transfection". Polymers 15, nr 15 (27.07.2023): 3202. http://dx.doi.org/10.3390/polym15153202.
Pełny tekst źródłaD’Amato, Anthony R., Michael T. K. Bramson, David T. Corr, Devan L. Puhl, Ryan J. Gilbert i Jed Johnson. "Solvent Retention in Electrospun Fibers Affects Scaffold Mechanical Properties". Electrospinning 2, nr 1 (1.09.2018): 15–28. http://dx.doi.org/10.1515/esp-2018-0002.
Pełny tekst źródłaKorpershoek, Jasmijn V., Mylène de Ruijter, Bastiaan F. Terhaard, Michella H. Hagmeijer, Daniël B. F. Saris, Miguel Castilho, Jos Malda i Lucienne A. Vonk. "Potential of Melt Electrowritten Scaffolds Seeded with Meniscus Cells and Mesenchymal Stromal Cells". International Journal of Molecular Sciences 22, nr 20 (18.10.2021): 11200. http://dx.doi.org/10.3390/ijms222011200.
Pełny tekst źródłaIqbal, Neelam, Thomas Michael Braxton, Antonios Anastasiou, El Mostafa Raif, Charles Kai Yin Chung, Sandeep Kumar, Peter V. Giannoudis i Animesh Jha. "Dicalcium Phosphate Dihydrate Mineral Loaded Freeze-Dried Scaffolds for Potential Synthetic Bone Applications". Materials 15, nr 18 (8.09.2022): 6245. http://dx.doi.org/10.3390/ma15186245.
Pełny tekst źródłaAhmad Hariza, Ahmad Mus’ab, Mohd Heikal Mohd Yunus, Mh Busra Fauzi, Jaya Kumar Murthy, Yasuhiko Tabata i Yosuke Hiraoka. "The Fabrication of Gelatin–Elastin–Nanocellulose Composite Bioscaffold as a Potential Acellular Skin Substitute". Polymers 15, nr 3 (3.02.2023): 779. http://dx.doi.org/10.3390/polym15030779.
Pełny tekst źródłaLari, Alireza, Tao Sun i Naznin Sultana. "PEDOT:PSS-Containing Nanohydroxyapatite/Chitosan Conductive Bionanocomposite Scaffold: Fabrication and Evaluation". Journal of Nanomaterials 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/9421203.
Pełny tekst źródłaToullec, Clément, Jean Le Bideau, Valerie Geoffroy, Boris Halgand, Nela Buchtova, Rodolfo Molina-Peña, Emmanuel Garcion i in. "Curdlan–Chitosan Electrospun Fibers as Potential Scaffolds for Bone Regeneration". Polymers 13, nr 4 (10.02.2021): 526. http://dx.doi.org/10.3390/polym13040526.
Pełny tekst źródłaMinden-Birkenmaier, Benjamin A., Rachel M. Neuhalfen, Blythe E. Janowiak i Scott A. Sell. "Preliminary Investigation and Characterization of Electrospun Polycaprolactone and Manuka Honey Scaffolds for Dermal Repair". Journal of Engineered Fibers and Fabrics 10, nr 4 (grudzień 2015): 155892501501000. http://dx.doi.org/10.1177/155892501501000406.
Pełny tekst źródłaDeng, Xu Liang, M. M. Xu, Dan Li, Gang Sui, X. Y. Hu i Xiao Ping Yang. "Electrospun PLLA/MWNTs/HA Hybrid Nanofiber Scaffolds and Their Potential in Dental Tissue Engineering". Key Engineering Materials 330-332 (luty 2007): 393–96. http://dx.doi.org/10.4028/www.scientific.net/kem.330-332.393.
Pełny tekst źródłaJain, Shubham, Mohammed Ahmad Yassin, Tiziana Fuoco, Hailong Liu, Samih Mohamed-Ahmed, Kamal Mustafa i Anna Finne-Wistrand. "Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification". Journal of Tissue Engineering 11 (styczeń 2020): 204173142095431. http://dx.doi.org/10.1177/2041731420954316.
Pełny tekst źródłaRozprawy doktorskie na temat "Potential Scaffolds"
Hed, Yvonne. "Multifunctional Dendritic Scaffolds: Synthesis, Characterization and Potential applications". Doctoral thesis, KTH, Ytbehandlingsteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127429.
Pełny tekst źródłaUtveckling av material för avancerade applikationer kräver innovativa makromolekyler med väldefinierade strukturer och som kan skräddarsys på ett enkelt sätt. Dendrimerer är en undergrupp av dendritiska polymerer vars egenskaper uppfyller dessa krav. De har en mycket förgrenad arkitektur med många funktionella grupper och är en av de mest väldefinierade befintliga syntetiska makromolekylerna. Trots dess väldefinierade karaktär och höga funktionalitet saknar ofta traditionella dendrimerer multipla kemiska funktionaliteter. Denna avhandling fokuserar därför på syntesen av mer komplexa dendritiska material för att förbättra deras kapacitet att skräddarsys, detta görs genom att introducera fler funktionaliteter som kan utnyttjas för multipla ändamål . Avhandlingen redogör för syntesen av difunktionella dendrimerer, dendritiska modifikationer av polyetylenglykol och cellulosaytor samt syntes av traditionella dendritiska hybrider. Byggstenarna som möjliggör syntesen, AB2C monomerer, framställdes också under detta arbete. Den ortogonala karaktären mellan klick grupper (azid, alkyn och alkene) och hydroxylgrupper har utnyttjats effektivt för funktionaliseringar genom användande av robust ”Click”-kemi och traditionella esterifikationsreaktioner. Vidare tillverkades de linjära dendritiska hybrider för att kombinera egenskaperna hos både linjära och traditionella dendritiska polymerer i en och samma makromolekyl. Samtliga dendritiska strukturer skräddarsyddes för applikationer så som benlimmer, biofunktionella dendritiska hydrogeler, biosensorer och läkemedels-bärande miceller.
QC 20130830
Sharp, Duncan McNeill Craig. "Bioactive scaffolds for potential bone regenerative medical applications". Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/9520.
Pełny tekst źródłaAduba, Donald C. Jr. "Multi-platform arabinoxylan scaffolds as potential wound dressing materials". VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3955.
Pełny tekst źródłaMohammadzadehmoghadam, Soheila. "Electrospun Silk Nanofibre Mats and Their Potential as Tissue Scaffolds". Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/77169.
Pełny tekst źródłaSisson, Kristin M. "Investigating the potential of electrospun gelatin and collagen scaffolds for tissue engineering applications". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 133 p, 2010. http://proquest.umi.com/pqdweb?did=1993336301&sid=9&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Pełny tekst źródłaCarlqvist, K. H. "The potential of muscle-derived progenitors on titanium scaffolds in bone regenerative applications". Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1301768/.
Pełny tekst źródłaBursey, Devan. "Ribosomally Synthesized and Post-Translationally Modified Peptides as Potential Scaffolds for Peptide Engineering". BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8124.
Pełny tekst źródłaAdegoke, Yusuf Adeyemi. "Design and synthesis of new scaffolds as antiproliferative agents and potential hsp90 inhibitors". University of Western Cape, 2020. http://hdl.handle.net/11394/7722.
Pełny tekst źródłaNatural products have been an important source of drugs and novel lead compounds in drug discovery. Their unique scaffolds have led to the synthesis of derivatives that continue to give rise to medicinally relevant agents. Thus, natural product-inspired drugs represent a significant proportion of drugs in the market and with several more in development. Cancer is among the leading public health problems and a prominent cause of death globally. Chemotherapy has been important in the management of this disease even though side effects that arise due to lack of selectivity is still an issue.
Rodriguez, Isaac. "Mineralization Potential of Electrospun PDO-nHA-Fibrinogen Scaffolds Intended for Cleft Palate Repair". VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/2111.
Pełny tekst źródłaIdahosa, Kenudi Christiana. "Bayliss-Hillman adducts as scaffolds for the construction of novel compounds with medicinal potential". Thesis, Rhodes University, 2012. http://hdl.handle.net/10962/d1006763.
Pełny tekst źródłaKsiążki na temat "Potential Scaffolds"
Lapaz Castillo, Jose Luis, Oscar Farrerons Vidal i Noelia Olmedo Torre. Research and Technology in Graphic Engineering and Design at the Universitat Politècnica de Catalunya. OmniaScience, 2022. http://dx.doi.org/10.3926/ege2022.
Pełny tekst źródłaButler, Mark James. Design and in vivo evaluation of the angiogenic potential of a poly(butyl methacrylate-co-methacrylic acid) tissue engineering scaffold. 2005.
Znajdź pełny tekst źródłaCzęści książek na temat "Potential Scaffolds"
Gomes, Nelson G. M., Suradet Buttachon i Anake Kijjoa. "Meroterpenoids from Marine Microorganisms: Potential Scaffolds for New Chemotherapy Leads". W Handbook of Anticancer Drugs from Marine Origin, 323–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07145-9_16.
Pełny tekst źródłaRahaman, Mohamed N., B. Sonny Bal i Lynda F. Bonewald. "Potential of Bioactive Glass Scaffolds as Implants for Structural Bone Repair". W Advances in Bioceramics and Porous Ceramics VIII, 1–15. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119211624.ch1.
Pełny tekst źródłaFrejd, Fredrik Y. "Novel Alternative Scaffolds and Their Potential Use for Tumor Targeted Radionuclide Therapy". W Targeted Radionuclide Tumor Therapy, 89–116. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8696-0_6.
Pełny tekst źródłaMontufar, Edgar B., Lucy Vojtova, Ladislav Celko i Maria-Pau Ginebra. "Calcium Phosphate Foams: Potential Scaffolds for Bone Tissue Modeling in Three Dimensions". W Methods in Molecular Biology, 79–94. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7021-6_6.
Pełny tekst źródłaDeng, Xu Liang, M. M. Xu, Dan Li, Gang Sui, X. Y. Hu i Xiao Ping Yang. "Electrospun PLLA/MWNTs/HA Hybrid Nanofiber Scaffolds and Their Potential in Dental Tissue Engineering". W Key Engineering Materials, 393–96. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.393.
Pełny tekst źródłaBölükbas, Deniz A., Martina M. De Santis, Hani N. Alsafadi, Ali Doryab i Darcy E. Wagner. "The Preparation of Decellularized Mouse Lung Matrix Scaffolds for Analysis of Lung Regenerative Cell Potential". W Methods in Molecular Biology, 275–95. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9086-3_20.
Pełny tekst źródłaWitczak, Zbigniew J., Roman Bielski i Tomasz Poplawski. "Functionalized CARB Pharmacophore (FCP) approach to thio and unsaturated carbohydrate scaffolds with potential anticancer activity". W Carbohydrate Chemistry, 130–50. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788013864-00130.
Pełny tekst źródłaRodriguez, Alexandra L., David R. Nisbet i Clare L. Parish. "The Potential of Stem Cells and Tissue Engineered Scaffolds for Repair of the Central Nervous System". W Stem Cells and Cancer Stem Cells, Volume 4, 97–111. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2828-8_10.
Pełny tekst źródłaLotan, E., i S. Einav. "Seeding Human Mesenchymal Stem Cells into Fibrin-Based Scaffolds - A Potential for a Future Angiogenic Therapy?" W IFMBE Proceedings, 260–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03900-3_75.
Pełny tekst źródłaWang, Wei, Lei Mei, Fan Wang, Baoqing Pei i Xiaoming Li. "The Potential Matrix and Reinforcement Materials for the Preparation of the Scaffolds Reinforced by Fibers or Tubes for Tissue Repair". W Tissue Repair, 25–77. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3554-8_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Potential Scaffolds"
Egan, Paul, Stephen J. Ferguson i Kristina Shea. "Design and 3D Printing of Hierarchical Tissue Engineering Scaffolds Based on Mechanics and Biology Perspectives". W ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59554.
Pełny tekst źródłaLawrence, Logan, James B. Day, Pier Paolo Claudio i Roozbeh (Ross) Salary. "Investigation of the Regenerative Potential of Human Bone Marrow Stem Cell-Seeded Polycaprolactone Bone Scaffolds, Fabricated Using Pneumatic Microextrusion Process". W ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-63411.
Pełny tekst źródłaNowlin, John, Md Maksudul Islam, Yingge Zhou i George Z. Tan. "Cone Electrospinning Polycaprolactone / Collagen Scaffolds With Microstructure Gradient". W ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2871.
Pełny tekst źródłaLu, Lin, David Wootton, Peter I. Lelkes i Jack Zhou. "Study of Structured Porogen Method for Bone Scaffold Fabrication". W ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASMEDC, 2008. http://dx.doi.org/10.1115/msec_icmp2008-72134.
Pełny tekst źródłaGilbert, Thomas W., James H. C. Wang, Stephen F. Badylak i Savio L. Y. Woo. "Development of a Novel Model System to Study Remodeling of ECM Scaffolds in Response to Cyclic Stretching". W ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41444.
Pełny tekst źródłaLee, Se-Jun, Wei Zhu i Lijie Grace Zhang. "Development of Novel 3D Scaffolds With Embedded Core-Shell Nanoparticles for Nerve Regeneration". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51595.
Pełny tekst źródłaTourlomousis, Filippos, Houzhu Ding, Antonio Dole i Robert C. Chang. "Towards Resolution Enhancement and Process Repeatability With a Melt Electrospinning Writing Process: Design and Protocol Considerations". W ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8774.
Pełny tekst źródłaWu, Y., J. Y. H. Fuh, Y. S. Wong i J. Sun. "Fabrication of 3D Scaffolds via E-Jet Printing for Tendon Tissue Repair". W ASME 2015 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/msec2015-9367.
Pełny tekst źródłaChinnasami, H., i R. Devireddy. "Osteo-Induction of Human Adipose Derived Stem Cells Cultured on Poly (L-Lactic Acid) Scaffolds Prepared by Thermally Induced Phase Separation Method". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51906.
Pełny tekst źródłaShanjani, Yaser, Naveen Chandrashekar i Ehsan Toyserkani. "Prediction of Biomechanical Properties of Bone Implant Scaffolds". W ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43001.
Pełny tekst źródłaRaporty organizacyjne na temat "Potential Scaffolds"
Hassan, Mozan, Abbas Khaleel, Sherif Karam, Ali Al-Marzouqi, Ihtesham Ur Rehman i Sahar Mohsin. Bacterial inhibition and osteogenic potentials of Sr/Zn co-doped nano-hydroxyapatite-PLGA composite scaffold for bone tissue engineering applications. Peeref, czerwiec 2023. http://dx.doi.org/10.54985/peeref.2306p7862520.
Pełny tekst źródłaMorrison, Mark, Joshuah Miron, Edward A. Bayer i Raphael Lamed. Molecular Analysis of Cellulosome Organization in Ruminococcus Albus and Fibrobacter Intestinalis for Optimization of Fiber Digestibility in Ruminants. United States Department of Agriculture, marzec 2004. http://dx.doi.org/10.32747/2004.7586475.bard.
Pełny tekst źródła