Gotowa bibliografia na temat „POTENTIAL CATHODE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „POTENTIAL CATHODE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "POTENTIAL CATHODE"
Drennan, Dina M., Raji E. Koshy, David B. Gent i Charles E. Schaefer. "Electrochemical treatment for greywater reuse: effects of cell configuration on COD reduction and disinfection byproduct formation and removal". Water Supply 19, nr 3 (27.07.2018): 891–98. http://dx.doi.org/10.2166/ws.2018.138.
Pełny tekst źródłaKolesnikov, A. V., i E. I. Ageenko. "Comparative studies of the discharge of hydronium ions on zinc, copper and aluminum cathodes". Izvestiya Vuzov. Tsvetnaya Metallurgiya (Universities' Proceedings Non-Ferrous Metallurgy) 28, nr 6 (7.12.2022): 22–31. http://dx.doi.org/10.17073/0021-3438-2022-6-22-31.
Pełny tekst źródłaPratama, Affiano Akbar Nur, Ahmad Jihad, Salsabila Ainun Nisa, Ike Puji Lestari, Cornelius Satria Yudha i Agus Purwanto. "Manganese Sulphate Fertilizer Potential as Raw Material of LMR-NMC Lithium-Ion Batteries: A Review". Materials Science Forum 1044 (27.08.2021): 59–72. http://dx.doi.org/10.4028/www.scientific.net/msf.1044.59.
Pełny tekst źródłaKaterina Rutkovska, Hennadii Tulskyi, Valerii Homozov i Alexandr Rusinov. "SUBSTANTIATION OF TECHNOLOGICAL INDICATORS OF APPLICATION OF A GAS-DIFFUSION CATHODE IN ELECTROCHEMICAL SYNTHESIS OF HYPOCHLORITE SOLUTIONS". Bulletin of the National Technical University "KhPI". Series: Chemistry, Chemical Technology and Ecology, nr 2 (4) (28.07.2022): 11–17. http://dx.doi.org/10.20998/2079-0821.2020.02.02.
Pełny tekst źródłaXie, Lin, i Donald Kirk. "Stability of a Fe-Rich Cathode Catalyst in an Anion Exchange Membrane Fuel Cell". Catalysis Research 01, nr 03 (9.06.2021): 1. http://dx.doi.org/10.21926/cr.2103003.
Pełny tekst źródłaTremblay, Pier-Luc, Neda Faraghiparapari i Tian Zhang. "Accelerated H2 Evolution during Microbial Electrosynthesis with Sporomusa ovata". Catalysts 9, nr 2 (8.02.2019): 166. http://dx.doi.org/10.3390/catal9020166.
Pełny tekst źródłaPayman, Adele R., i Dan M. Goebel. "Development of a 50-A heaterless hollow cathode for electric thrusters". Review of Scientific Instruments 93, nr 11 (1.11.2022): 113543. http://dx.doi.org/10.1063/5.0124694.
Pełny tekst źródłaMatos, Luís, i José Martins. "Analysis of an Educational Cathodic Protection System with a Single Drainage Point: Modeling and Experimental Validation in Aqueous Medium". Materials 11, nr 11 (25.10.2018): 2099. http://dx.doi.org/10.3390/ma11112099.
Pełny tekst źródłaMitsushima, Shigenori, Ashraf Abdel Haleem, Kensaku Nagasawa, Yoshiyuki Kuroda, Akihiro Kato, Zaenal Awaludin, Yoshinori Nishiki i Takuto Araki. "(Invited) Leak Current Analysis of Stop Operation and Its Modeling for the Development of Bipolar Alkaline Water Electrolyzer Electrodes". ECS Meeting Abstracts MA2022-01, nr 33 (7.07.2022): 1344. http://dx.doi.org/10.1149/ma2022-01331344mtgabs.
Pełny tekst źródłaHonda, Hisashi, i Katsuhide Misono. "the Cathode fall potential of cold cathode fluorescent lamps". JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 73, Appendix (1989): 8. http://dx.doi.org/10.2150/jieij1980.73.appendix_8.
Pełny tekst źródłaRozprawy doktorskie na temat "POTENTIAL CATHODE"
Siegfried, Adam. "Exploratory synthesis of polyanion-based open-framework solids as potential candidates for cathode material applications". Connect to this title online, 2008. http://etd.lib.clemson.edu/documents/1211391125/.
Pełny tekst źródłaPfluge, Matthew Edward. "Study of praseodymium strontium manganite for the potential use as a solid oxide fuel cell cathode". Thesis, Montana State University, 2005. http://etd.lib.montana.edu/etd/2005/pfluge/PflugeM0505.pdf.
Pełny tekst źródłaSharp, Matthew David. "The Ba-Pb-O system and its potential as a solid oxide fuel cell (SOFC) cathode material /". St Andrews, 2007. http://hdl.handle.net/10023/378.
Pełny tekst źródłaLobos, Aldo. "Bioleaching Potential of Filamentous Fungi to Mobilize Lithium and Cobalt from Spent Rechargeable Li-Ion Batteries". Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/7051.
Pełny tekst źródłaNzaba, Sarre Kadia Myra. "Lithium manganese oxide modified with copper-gold nanocomposite cladding- a potential novel cathode material for spinel type lithium-ion batteries". University of the Western Cape, 2014. http://hdl.handle.net/11394/4444.
Pełny tekst źródłaSpinel lithium manganese oxide (LiMn2O4), for its low cost, easy preparation and nontoxicity, is regarded as a promising cathode material for lithium-ion batteries. However, a key problem prohibiting it from large scale commercialization is its severe capacity fading during cycling. The improvement of electrochemical cycling stability is greatly attributed to the suppression of Jahn-Teller distortion (Robertson et al., 1997) at the surface of the spinel LiMn2O4 particles. These side reactions result in Mn2+ dissolution mainly at the surface of the cathode during cycling, therefore surface modification of the cathode is deemed an effective way to reduce side reactions. The utilization of a nanocomposite which comprises of metallic Cu and Au were of interest because their oxidation gives rise to a variety of catalytically active configurations which advances the electrochemical property of Li-ion battery. In this research study, an experimental strategy based on doping the LiMn2O4 with small amounts of Cu-Au nanocomposite cations for substituting the Mn3+ ions, responsible for disproportionation, was employed in order to increase conductivity, improve structural stability and cycle life during successive charge and discharge cycles. The spinel cathode material was synthesized by coprecipitation method from a reaction of lithium hydroxide and manganese acetate using 1:2 ratio. The Cu-Au nanocomposite was synthesized via a chemical reduction method using copper acetate and gold acetate in a 1:3 ratio. Powder samples of LiMxMn2O4 (M = Cu-Au nanocomposite) was prepared from a mixture of stoichiometric amounts of Cu-Au nanocomposite and LiMn2O4 precursor. The novel LiMxMn2O4 material has a larger surface area which increases the Li+ diffusion coefficient and reduces the volumetric changes and lattice stresses caused by repeated Li+ insertion and expulsion. Structural and morphological sample analysis revealed that the modified cathode material have good crystallinity and well dispersed particles. These results corroborated the electrochemical behaviour of LiMxMn2O4 examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The diffusion coefficients for LiMn2O4 and LiMxMn2-xO4 obtained are 1.90 x10-3 cm2 / s and 6.09 x10-3 cm2 / s respectively which proved that the Cu-Au nanocomposite with energy band gap of 2.28 eV, effectively improved the electrochemical property. The charge / discharge value obtained from integrating the area under the curve of the oxidation peak and reduction peak for LiMxMn2-xO4 was 263.16 and 153.61 mAh / g compared to 239.16 mAh / g and 120 mAh / g for LiMn2O4. It is demonstrated that the presence of Cu-Au nanocomposite reduced side reactions and effectively improved the electrochemical performance of LiMn2O4.
Davies, Andrew. "A study and evaluation of some amorphous transition metal oxides as potential cathode active materials for secondary lithium polymer-electrolyte batteries". Thesis, University of Reading, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317606.
Pełny tekst źródłaKosgei, Cosmas Kipyego. "Investigation of the effect of basicity and Concentration ofproton accepting bases on the potential of Quinones for highpotential quinone based cathode materials". Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-288369.
Pełny tekst źródłaYokoyama, Yuko. "Studies on Electrolytes for High-Voltage Aqueous Rechargeable Lithium-ion Batteries". Kyoto University, 2019. http://hdl.handle.net/2433/242525.
Pełny tekst źródłaWedig, Anja [Verfasser], i Joachim [Akademischer Betreuer] Maier. "Oxygen exchange kinetics of the potential solid oxide fuel cell cathode material (Bi,Sr)(Co,Fe)O3-delta / Anja Wedig. Betreuer: Joachim Maier". Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2013. http://d-nb.info/1041622236/34.
Pełny tekst źródłaMillar, Laura. "Investigating the opportunity to increase the economic and environmental potential of the integrated-planar solid oxide fuel cell through choice of cathode current collector". Thesis, University of Surrey, 2009. http://epubs.surrey.ac.uk/843242/.
Pełny tekst źródłaKsiążki na temat "POTENTIAL CATHODE"
R, Sarver-Verhey Timothy, i Lewis Research Center, red. International Space Station cathode life testing: ... contract NAS3-27186. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.
Znajdź pełny tekst źródłaR, Sarver-Verhey Timothy, i Lewis Research Center, red. International Space Station cathode life testing: ... contract NAS3-27186. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.
Znajdź pełny tekst źródłaAlberia, T. B. Modelling and testing instant off potential measurement for cathodic protection. Manchester: UMIST, 1997.
Znajdź pełny tekst źródłaWilliams, John D. Plasma contactor research, 1989: Annual report. [Cleveland, Ohio]: Lewis Research Center, National Aeronautics and Space Administration, 1990.
Znajdź pełny tekst źródłaFlint, Thomas A. The application of cathodic potential scanning at a hanging mercury drop electrode to the quantitative determination of transition metals. Manchester: UMIST, 1997.
Znajdź pełny tekst źródłaInternational Space Station cathode life testing: ... contract NAS3-27186. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.
Znajdź pełny tekst źródłaCasas, Rogelio De Las, i Ronald Bianchetti. Potential Theory Applied to Cathodic Protection Design. Association for Materials Protection and Performance (AMPP), 2021.
Znajdź pełny tekst źródłaOff-potential measurement systems for impressed current cathodic protection. [Champaign, IL]: US Army Construction Engineering Research Laboratories, 1994.
Znajdź pełny tekst źródłaLee, Rupert Utak. Influence of Applied Potential, Fluid Velocity, PH and Temperature on Formation of Calcareous Deposits under Impressed Current Cathodic Protection. Creative Media Partners, LLC, 2015.
Znajdź pełny tekst źródłaLee, Rupert Utak. Influence of Applied Potential, Fluid Velocity, PH and Temperature on Formation of Calcareous Deposits under Impressed Current Cathodic Protection. Creative Media Partners, LLC, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "POTENTIAL CATHODE"
Sarkar, Ananta, Pallavi Raj, Manas Ranjan Panda i Sagar Mitra. "High-Potential Cathode for Sodium-Ion Battery". W Advances in Energy Research, Vol. 1, 371–77. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2666-4_36.
Pełny tekst źródłaThomas, Anjumole P., Akhila Das, Leya Rose Raphael, Neethu T. M. Balakrishnan, Jou-Hyeon Ahn, M. J. Jabeen Fatima i Raghavan Prasanth. "Lithium Cobalt Oxide (LiCoO2): A Potential Cathode Material for Advanced Lithium-Ion Batteries". W Electrospinning for Advanced Energy Storage Applications, 455–77. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8844-0_16.
Pełny tekst źródłaPfluge, Matthew E., Max C. Deibert, Greg W. Coffey i Larry R. Pederson. "Study of Praseodyium Strontium Manganite for the Potential Use as a Solid Oxide Fuel Cell Cathode". W Ceramic Engineering and Science Proceedings, 121–28. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470291245.ch14.
Pełny tekst źródłaGoogan, Chris. "Protection potential – carbon steel". W Marine Corrosion and Cathodic Protection, 121–39. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003216070-6.
Pełny tekst źródłaTanjung, Iqbal, Affandi, Syifaul Huzni i Syarizal Fonna. "Investigation the Effect of Concrete Element Size on the Potential Distribution of RC Cathodic Protection Simulation Using BEM 3D". W Proceedings of the 2nd International Conference on Experimental and Computational Mechanics in Engineering, 189–98. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0736-3_19.
Pełny tekst źródłaKim, Seong Jong, Seok Ki Jang i Jeong Il Kim. "Effects of Post-Weld Heat Treatment on Optimum Cathodic Protection Potential of High-Strength Steel in Marine Environment Conditions". W Materials Science Forum, 133–36. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-966-0.133.
Pełny tekst źródła"High Potential LiNi0.5Mn1.5O4 Cathode for LIBs". W Materials Research Foundations, 28–50. Materials Research Forum LLC, 2017. http://dx.doi.org/10.21741/9781945291272-2.
Pełny tekst źródłaOriakhi, Christopher O. "Fundamentals of Electrochemistry". W Chemistry in Quantitative Language. Oxford University Press, 2009. http://dx.doi.org/10.1093/oso/9780195367997.003.0027.
Pełny tekst źródłaHuu Hieu, Nguyen. "Graphene-Based Material for Fabrication of Electrodes in Dye-Sensitized Solar Cells". W Solar Cells [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93637.
Pełny tekst źródłaNguyen, Thi Dieu Hien, Shih-Yang Lin, Hsien-Ching Chung, Wei-Bang Li, Ngoc Thanh Thuy Tran, Nguyen Thi Han, Hsin-Yi Liu, Hai Duong Pham i Ming-Fa Lin. "Open issues and potential applications". W First-Principles Calculations for Cathode, Electrolyte and Anode Battery Materials. IOP Publishing, 2021. http://dx.doi.org/10.1088/978-0-7503-4685-6ch18.
Pełny tekst źródłaStreszczenia konferencji na temat "POTENTIAL CATHODE"
Beilis, I. I. "Cathode potential drop at a transient cathode spot on a microprotrusion". W 2010 24th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). IEEE, 2010. http://dx.doi.org/10.1109/deiv.2010.5625876.
Pełny tekst źródłaCelik, Ismail B., Randall S. Gemmen i Suryanarayana R. Pakalapati. "A Modular Approach to Fuel Cell Modeling: Analysis of a SOFC Cathode". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33181.
Pełny tekst źródłaQin, Yu, Kan Xie, Qimeng Xia i JiTing Ouyang. "The High Frequency Potential Oscillations Near the Hollow Cathode in Ion Thrusters". W 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-4629.
Pełny tekst źródłaMikellides, I., Ira Katz i Dan Goebel. "Model of the Plasma Potential Distribution in the Plume of a Hollow Cathode". W 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-4108.
Pełny tekst źródłaNakagawa, Tadahiro, Naoki Shikazono i Nobuhide Kasagi. "Numerical Simulation of Electrochemical Reaction in Reconstructed Three-Dimensional LSM/YSZ Composite Cathode". W ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65027.
Pełny tekst źródłaBobzin, K., F. Ernst, J. Zwick, K. Richardt, D. Sporer i R. J. Molz. "Triplex Pro 200 – Potential and Advanced Applications". W ITSC2007, redaktorzy B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima i G. Montavon. ASM International, 2007. http://dx.doi.org/10.31399/asm.cp.itsc2007p0723.
Pełny tekst źródłaBanta, Larry E., Bernardo Restrepo, Alex J. Tsai i David Tucker. "Cathode Temperature Management During Hybrid System Startup". W ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33121.
Pełny tekst źródłaDONALDSON, A., i M. KRISTIANSEN. "An assessment of erosion resistant cathode materials with potential application in high power electric propulsion devices". W 25th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-2515.
Pełny tekst źródłaWang, Chunmei, i Shinichi Hirano. "Method to Enhance Fuel Cell Powertrain System Robustness by Reducing Cathode Potential during Start-Up Condition". W WCX™ 17: SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017. http://dx.doi.org/10.4271/2017-01-1186.
Pełny tekst źródłaShaffer, James, Saeid Zare i Omid Askari. "Structure and Measurement of Atmospheric and High-Pressure Ignition Plasma". W ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-73138.
Pełny tekst źródłaRaporty organizacyjne na temat "POTENTIAL CATHODE"
Rossi, Ruggero, David Jones, Jaewook Myung, Emily Zikmund, Wulin Yang, Yolanda Alvarez Gallego, Deepak Pant i in. Evaluating a multi-panel air cathode through electrochemical and biotic tests. Engineer Research and Development Center (U.S.), grudzień 2022. http://dx.doi.org/10.21079/11681/46320.
Pełny tekst źródłaBoris Merinov, Adri van Duin, Sossina Haile i William A. Goddard III. REACTIVE FORCE FIELDS FOR Y-DOPED BaZrO3 ELECTROLYTE AND NI-ANODE. POTENTIAL CATHODE MATERIALS FOR APPLICATION IN PROTON CERAMIC FUEL CELLS. Office of Scientific and Technical Information (OSTI), październik 2004. http://dx.doi.org/10.2172/836617.
Pełny tekst źródłaKiefner. L51606 Technique Development for Polarized Pipe-to-Soil Potential Measurements. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), grudzień 1989. http://dx.doi.org/10.55274/r0010103.
Pełny tekst źródłaThompson, N. G., i K. M. Lawson. PR-186-9126-R01 Evaluation of Commercial Systems for Measuring Cathodic Protection. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), kwiecień 1993. http://dx.doi.org/10.55274/r0011921.
Pełny tekst źródłaThompson i Lawson. L51888 Development of Coupons for Monitoring Cathodic Protection Systems. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), kwiecień 2002. http://dx.doi.org/10.55274/r0010179.
Pełny tekst źródłaBarlo, Thomas. L51502 Investigation of Side-Drain Potential for Cathodic Protection of Bare Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 1986. http://dx.doi.org/10.55274/r0011425.
Pełny tekst źródłaYunovich i Tossey. L52128 Effect of High CP Potentials on Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), listopad 2004. http://dx.doi.org/10.55274/r0011111.
Pełny tekst źródłaGummow. L51908 AC Grounding Effects on Cathodic Protection Performance in Pipeline Stations.pdf. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), grudzień 2001. http://dx.doi.org/10.55274/r0010269.
Pełny tekst źródłaGummow. L52106 Cathodic Protection Gap Analysis. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), wrzesień 2003. http://dx.doi.org/10.55274/r0011098.
Pełny tekst źródłaSong, Frank. PR-015-0835-R01 Development of Variable Cathodic Protection Criteria. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), październik 2010. http://dx.doi.org/10.55274/r0010716.
Pełny tekst źródła