Gotowa bibliografia na temat „POSITION CONTROL OF ROBOT”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „POSITION CONTROL OF ROBOT”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "POSITION CONTROL OF ROBOT"
Zhang, Liang, Yaguang Zhu, Feifei Zhang i Shuangjie Zhou. "Position-Posture Control of Multilegged Walking Robot Based on Kinematic Correction". Journal of Robotics 2020 (25.09.2020): 1–9. http://dx.doi.org/10.1155/2020/8896396.
Pełny tekst źródłaPană, Cristina, Cristian Vladu, Daniela Pătraşcu-Pană, Florina Besnea (Petcu), Çtefan Cismaru, Andrei Trăşculescu, Ionuţ Reşceanu i Nicu Bîzdoacă. "Position control for hybrid infinite-continuous hyper-redundant robot". MATEC Web of Conferences 343 (2021): 08009. http://dx.doi.org/10.1051/matecconf/202134308009.
Pełny tekst źródłaPark, Hwi-Geun, i Hyun-Sik Kim. "Mechanism Development and Position Control of Smart Buoy Robot". Journal of Ocean Engineering and Technology 35, nr 4 (31.08.2021): 305–12. http://dx.doi.org/10.26748/ksoe.2021.043.
Pełny tekst źródłaSu, Liying, Lei Shi i Yueqing Yu. "Collaborative Assembly Operation between Two Modular Robots Based on the Optical Position Feedback". Journal of Robotics 2009 (2009): 1–8. http://dx.doi.org/10.1155/2009/214154.
Pełny tekst źródłaHandayani, A. S., N. L. Husni, A. B. Insani, E. Prihatini, C. R. Sitompul, S. Nurmaini i I. Yani. "Robot Position Control using Android". Journal of Physics: Conference Series 1198, nr 5 (kwiecień 2019): 052002. http://dx.doi.org/10.1088/1742-6596/1198/5/052002.
Pełny tekst źródłaNugraha, Sapta. "Sistem Kendali Navigasi Robot Manual". JTEV (Jurnal Teknik Elektro dan Vokasional) 5, nr 1.1 (25.09.2019): 91. http://dx.doi.org/10.24036/jtev.v5i1.1.106153.
Pełny tekst źródłaKazerooni, H. "Compliance Control and Stability Analysis of Cooperating Robot manipulators". Robotica 7, nr 3 (lipiec 1989): 191–98. http://dx.doi.org/10.1017/s0263574700006044.
Pełny tekst źródłaLi, Zhaolu, Ning Xu, Xiaoli Zhang, Xiafu Peng i Yumin Song. "Motion Control Method of Bionic Robot Dog Based on Vision and Navigation Information". Applied Sciences 13, nr 6 (13.03.2023): 3664. http://dx.doi.org/10.3390/app13063664.
Pełny tekst źródłaMassoud, A. T., i H. A. ElMaraghy. "AN IMPEDANCE CONTROL APPROACH FOR FLEXIBLE JOINTS ROBOT MANIPULATORS". Transactions of the Canadian Society for Mechanical Engineering 19, nr 3 (wrzesień 1995): 212–26. http://dx.doi.org/10.1139/tcsme-1995-0010.
Pełny tekst źródłaSong, Zhifeng. "Sliding control method of marine ecological protection robot". Thermal Science 25, nr 6 Part A (2021): 4043–50. http://dx.doi.org/10.2298/tsci2106043s.
Pełny tekst źródłaRozprawy doktorskie na temat "POSITION CONTROL OF ROBOT"
Winter, Pieter Arnoldus. "Position control of a mobile robot /". Link to the online version, 2005. http://hdl.handle.net/10019/1317.
Pełny tekst źródłaWinter, Pieter. "Position control of a mobile robot". Thesis, Stellenbosch : University of Stellenbosch, 2005. http://hdl.handle.net/10019.1/1776.
Pełny tekst źródłaPosition calculation of mobile objects has challenged engineers and designers for years and is still continuing to do so. There are many solutions available today. Probably the best known and most widely used outdoor system today is the Global Positioning System (GPS). There are very little systems available for indoor use. An absolute positioning system was developed for this thesis. It uses a combination of ultrasonic and Radio Frequency (RF) communications to calculate a position fix in doors. Radar techniques were used to ensure robustness and reliability even in noisy environments. A small mobile robot was designed and built to test and illustrate the use of the system.
Steven, Andrew. "Hybrid force and position control in robotic surface processing". Thesis, University of Newcastle Upon Tyne, 1989. http://hdl.handle.net/10443/657.
Pełny tekst źródłaSahirad, Mohammad. "Position and force control of direct drive robot arms". Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47240.
Pełny tekst źródłaIrigoyen, Eizmendi Javier. "Commande en position et force d'un robot manipulateur d'assemblage". Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37598444q.
Pełny tekst źródłaYung, Ho-lam. "Position and pose estimation for visual control of robot manipulators in planar tasks". Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43224283.
Pełny tekst źródłaZhang, Zhongkai. "Vision-based calibration, position control and force sensing for soft robots". Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I001/document.
Pełny tekst źródłaThe modeling of soft robots which have, theoretically, infinite degrees of freedom, are extremely difficult especially when the robots have complex configurations. This difficulty of modeling leads to new challenges for the calibration and the control design of the robots, but also new opportunities with possible new force sensing strategies. This dissertation aims to provide new and general solutions using modeling and vision. The thesis at first presents a discrete-time kinematic model for soft robots based on the real-time Finite Element (FE) method. Then, a vision-based simultaneous calibration of sensor-robot system and actuators is investigated. Two closed-loop position controllers are designed. Besides, to deal with the problem of image feature loss, a switched control strategy is proposed by combining both the open-loop controller and the closed-loop controller. Using soft robot itself as a force sensor is available due to the deformable feature of soft structures. Two methods (marker-based and marker-free) of external force sensing for soft robots are proposed based on the fusion of vision-based measurements and FE model. Using both methods, not only the intensities but also the locations of the external forces can be estimated.As a specific application, a cable-driven continuum catheter robot through contacts is modeled based on FE method. Then, the robot is controlled by a decoupled control strategy which allows to control insertion and bending independently. Both the control inputs and the contact forces along the entire catheter can be computed by solving a quadratic programming (QP) problem with a linear complementarity constraint (QPCC)
Yung, Ho-lam, i 容浩霖. "Position and pose estimation for visual control of robot manipulators in planar tasks". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43224283.
Pełny tekst źródłaKhademolama, Ehsan. "Vision in the Loop for Force and Position Control of the Robot Manipulators". Doctoral thesis, Università degli studi di Bergamo, 2018. http://hdl.handle.net/10446/104935.
Pełny tekst źródłaBest, Charles Mansel. "Position and Stiffness Control of Inflatable Robotic Links Using Rotary Pneumatic Actuation". BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5971.
Pełny tekst źródłaKsiążki na temat "POSITION CONTROL OF ROBOT"
Center, Langley Research, red. Robot position sensor fault tolerance. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Znajdź pełny tekst źródła1936-, Aggarwal J. K., i United States. National Aeronautics and Space Administration., red. Positional estimation techniques for an autonomous mobile robot: Final report. Austin, Tex: Computer and Vision Research Center, University of Texas at Austin, 1990.
Znajdź pełny tekst źródłaZhen-Lei, Zhou, i United States. National Aeronautics and Space Administration., red. Learning-based position control of a closed-kinematic chain robot end-effector. Washington, DC: Catholic University of America, Dept. of Electrical Engineering, 1990.
Znajdź pełny tekst źródłaJer-Nan, Juang, i Langley Research Center, red. Experimental robot position sensor fault tolerance using accelerometers and joint torque sensors. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Znajdź pełny tekst źródłaLamon, Pierre. 3D-position tracking and control for all-terrain robots. Berlin: Springer, 2008.
Znajdź pełny tekst źródła3D-position tracking and control for all-terrain robots. Berlin: Springer, 2008.
Znajdź pełny tekst źródłaMutambara, Arthur G. O. A framework for a supervisory expert system for robotic manipulators with joint-position limits and joint-rate limits. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Znajdź pełny tekst źródłaLamon, Pierre. 3D-Position Tracking and Control for All-Terrain Robots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78287-2.
Pełny tekst źródłaStirniman, Robert. U.S. market for position sensors, 1986-1991 (and interface electronics). [United States]: Motor Tech Trends, 1986.
Znajdź pełny tekst źródłaE, Cook George, i United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., red. A generalized method for automatic downhand and wirefeed control of a welding robot and positioner. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Znajdź pełny tekst źródłaCzęści książek na temat "POSITION CONTROL OF ROBOT"
Siciliano, Bruno, i Luigi Villani. "Advanced Force and Position Control". W Robot Force Control, 89–112. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4431-9_5.
Pełny tekst źródłaTamas, Levente, Gheorghe Lazea, Andras Majdik, Mircea Popa i Istvan Szoke. "Position Estimation Techniques for Mobile Robots". W Robot Motion and Control 2009, 319–28. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-985-5_29.
Pełny tekst źródłaSiciliano, Bruno. "Parallel Force/Position Control of Robot Manipulators". W Robotics Research, 78–89. London: Springer London, 1996. http://dx.doi.org/10.1007/978-1-4471-1021-7_9.
Pełny tekst źródłaRönnau, Arne, Thilo Kerscher i Rüdiger Dillmann. "Dynamic Position/Force Controller of a Four Degree-of-Freedom Robotic Leg". W Robot Motion and Control 2011, 117–26. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2343-9_9.
Pełny tekst źródłaMaiti, Roshni, Kaushik Das Sharma i Gautam Sarkar. "Angular Position Control of Two Link Robot Manipulator". W Studies in Systems, Decision and Control, 181–98. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97102-1_6.
Pełny tekst źródłaTetik, Halil, Rohit Kalla, Gokhan Kiper i Sandipan Bandyopadhyay. "Position Kinematics of a 3-RRS Parallel Manipulator". W ROMANSY 21 - Robot Design, Dynamics and Control, 65–72. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33714-2_8.
Pełny tekst źródłaMurray, A. P., i F. Pierrot. "N-Position Synthesis of Parallel Planar RPR Platforms". W Advances in Robot Kinematics: Analysis and Control, 69–78. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9064-8_7.
Pełny tekst źródłaNonami, Kenzo, Ranjit Kumar Barai, Addie Irawan i Mohd Razali Daud. "Position-Based Robust Locomotion Control of Hexapod Robot". W Intelligent Systems, Control and Automation: Science and Engineering, 105–39. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54349-7_5.
Pełny tekst źródłaDeng, Wenbin, Hyuk-Jin Lee i Jeh-Won Lee. "Dynamic Hybrid Position/Force Control for Parallel Robot Manipulators". W ROMANSY 18 Robot Design, Dynamics and Control, 57–64. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-7091-0277-0_6.
Pełny tekst źródłaYamamoto, Ko, Ryo Yanase i Yoshihiko Nakamura. "Maximal Output Admissible Set of Foot Position Control in Humanoid Walking". W ROMANSY 23 - Robot Design, Dynamics and Control, 43–51. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58380-4_6.
Pełny tekst źródłaStreszczenia konferencji na temat "POSITION CONTROL OF ROBOT"
Ryu, Ji-Chul, Kaustubh Pathak i Sunil K. Agarwal. "Control of a Passive Mobility Assistive Robot". W ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14701.
Pełny tekst źródłaKhatib, Oussama, Peter Thaulad, Taizo Yoshikawa i Jaeheung Park. "Torque-position transformer for task control of position controlled robots". W 2008 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2008. http://dx.doi.org/10.1109/robot.2008.4543450.
Pełny tekst źródłaTsuno, Takaya, Tatsuhiro Morimoto, Hirokazu Matsui, Ken’ichi Yano, Toyohisa Mizuochi, Toshihiko Arima i Shigeru Fukui. "Position Correcting Control System for the Vacuum Cleaning Robot Considering Hose Repulsion". W ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11176.
Pełny tekst źródłaDobrovodsky, K. "Quaternion position representation in robot kinematic structures". W International Conference on Control '94. IEE, 1994. http://dx.doi.org/10.1049/cp:19940193.
Pełny tekst źródłaNurlaili, Ridha, Indra Adji Sulistijono i Anhar Risnumawan. "Mobile Robot Position Control Using Computer Vision". W 2019 International Electronics Symposium (IES). IEEE, 2019. http://dx.doi.org/10.1109/elecsym.2019.8901619.
Pełny tekst źródłaBayoume, Mustafa Osman, M. Abd El-Geliel i Sohair F. Rezeka. "Supervisory position control for wheeled mobile robot". W 2016 20th International Conference on System Theory, Control and Computing (ICSTCC). IEEE, 2016. http://dx.doi.org/10.1109/icstcc.2016.7790670.
Pełny tekst źródłaPadhy, P. K., Takeshi Sasaki, Sousuke Nakamura i Hideki Hashimoto. "Modeling and position control of mobile robot". W 2010 11th IEEE International Workshop on Advanced Motion Control (AMC). IEEE, 2010. http://dx.doi.org/10.1109/amc.2010.5464018.
Pełny tekst źródłaFilaretov, Vladimir F., i Alexandr V. Zuev. "Adaptive force/position control of robot manipulators". W 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2008. http://dx.doi.org/10.1109/aim.2008.4601641.
Pełny tekst źródłaShi, Wang, i Wang Yao-nan. "Robot position control based on Hamiltonian system". W 2013 Chinese Automation Congress (CAC). IEEE, 2013. http://dx.doi.org/10.1109/cac.2013.6775830.
Pełny tekst źródłaIldar Farkhatdinov i Jee-Hwan Ryu. "Hybrid position-position and position-speed command strategy for the bilateral teleoperation of a mobile robot". W 2007 International Conference on Control, Automation and Systems. IEEE, 2007. http://dx.doi.org/10.1109/iccas.2007.4406773.
Pełny tekst źródłaRaporty organizacyjne na temat "POSITION CONTROL OF ROBOT"
Nasr, Chaiban. Neural Networks For Robot Control. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2001. http://dx.doi.org/10.21236/ada387882.
Pełny tekst źródłaWilliamson, Matthew M. Exploiting Natural Dynamics in Robot Control. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1998. http://dx.doi.org/10.21236/ada457056.
Pełny tekst źródłaGage, Douglas W. Command Control for Many-Robot Systems. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1992. http://dx.doi.org/10.21236/ada422540.
Pełny tekst źródłaGeorge Danko. Integrated Robot-Human Control in Mining Operations. Office of Scientific and Technical Information (OSTI), wrzesień 2007. http://dx.doi.org/10.2172/988569.
Pełny tekst źródłaGeorge Danko. INTEGRATED ROBOT-HUMAN CONTROL IN MINING OPERATIONS. Office of Scientific and Technical Information (OSTI), kwiecień 2005. http://dx.doi.org/10.2172/882518.
Pełny tekst źródłaGeorge Danko. INTEGRATED ROBOT-HUMAN CONTROL IN MINING OPERATIONS. Office of Scientific and Technical Information (OSTI), kwiecień 2006. http://dx.doi.org/10.2172/882519.
Pełny tekst źródłaFalco, Joe, Jeremy Marvel, Rick Norcross i Karl Van Wyk. Benchmarking Robot Force Control Capabilities: Experimental Results. National Institute of Standards and Technology, styczeń 2016. http://dx.doi.org/10.6028/nist.ir.8097.
Pełny tekst źródłaBlackburn, Michael R., i Hoa G. Nguyen. Autonomous Visual Control of a Mobile Robot. Fort Belvoir, VA: Defense Technical Information Center, listopad 1994. http://dx.doi.org/10.21236/ada422533.
Pełny tekst źródłaStarr, G. Sensor-driven robot control and mobility: Final report. Office of Scientific and Technical Information (OSTI), maj 1989. http://dx.doi.org/10.2172/5912296.
Pełny tekst źródłaArkin, Ronald C., Frank Dellaert i Joan Devassy. Envisioning: Mental Rotation-based Semi-reactive Robot Control. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2012. http://dx.doi.org/10.21236/ada563085.
Pełny tekst źródła