Artykuły w czasopismach na temat „Porus Framework”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Porus Framework”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Mizutani, Yoichiro, Masateru Hattori, Masahiko Okuyama, Toshihiro Kasuga i Masayuki Nogami. "Preparation of Porous Composites with a Porous Framework Using Hydroxyapatite Whiskers and Poly(L-Lactic Acid) Short Fibers". Key Engineering Materials 309-311 (maj 2006): 1079–82. http://dx.doi.org/10.4028/www.scientific.net/kem.309-311.1079.
Pełny tekst źródłaAlves Brito-Neto, Jose Geraldo, Taku Matsuzaka, Yosuke Saito i Masanori Hayase. "Porous Metal Frameworks on Silicon Substrates". Advances in Science and Technology 54 (wrzesień 2008): 416–21. http://dx.doi.org/10.4028/www.scientific.net/ast.54.416.
Pełny tekst źródłaWang, Sue-Lein. "Mesoporous Metal Phosphites with 3D Crystalline Frameworks". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C1119. http://dx.doi.org/10.1107/s2053273314088809.
Pełny tekst źródłaLi, Pei-Zhou, Jie Su, Jie Liang, Jia Liu, Yuanyuan Zhang, Hongzhong Chen i Yanli Zhao. "A highly porous metal–organic framework for large organic molecule capture and chromatographic separation". Chemical Communications 53, nr 24 (2017): 3434–37. http://dx.doi.org/10.1039/c7cc01063j.
Pełny tekst źródłaZharkov, Evgeny. "Post-Normal Times Laboratory". Philosophy. Journal of the Higher School of Economics V, nr 4 (31.12.2021): 65–77. http://dx.doi.org/10.17323/2587-8719-2021-4-65-77.
Pełny tekst źródłaLi, Xiao-Hui, Yi-Wei Liu, Shu-Mei Liu, Shuang Wang, Li Xu, Zhong Zhang, Fang Luo, Ying Lu i Shu-Xia Liu. "A gel-like/freeze-drying strategy to construct hierarchically porous polyoxometalate-based metal–organic framework catalysts". Journal of Materials Chemistry A 6, nr 11 (2018): 4678–85. http://dx.doi.org/10.1039/c7ta10334d.
Pełny tekst źródłaWang, Zi, i Zhongyu Hou. "Room-temperature fabrication of a three-dimensional porous silicon framework inspired by a polymer foaming process". Chemical Communications 53, nr 63 (2017): 8858–61. http://dx.doi.org/10.1039/c7cc04309k.
Pełny tekst źródłaPark, Seung-Keun, Jin-Sung Park i Yun Chan Kang. "Selenium-infiltrated metal–organic framework-derived porous carbon nanofibers comprising interconnected bimodal pores for Li–Se batteries with high capacity and rate performance". Journal of Materials Chemistry A 6, nr 3 (2018): 1028–36. http://dx.doi.org/10.1039/c7ta09676c.
Pełny tekst źródłaLee, Seonghwan, Seok Jeong, Junmo Seong, Jaewoong Lim, Amitosh Sharma, Somi Won, Dohyun Moon, Seung Bin Baek i Myoung Soo Lah. "Solvent-mediated framework flexibility of interdigitated 2D layered metal–organic frameworks". Materials Chemistry Frontiers 5, nr 9 (2021): 3621–27. http://dx.doi.org/10.1039/d1qm00251a.
Pełny tekst źródłaWang, Zhen, Yan-Qun Liu, Yu-Hang Zhao, Qing-Pu Zhang, Yu-Ling Sun, Bin-Bin Yang, Jian-Hua Bu i Chun Zhang. "Highly covalent molecular cage based porous organic polymer: pore size control and pore property enhancement". RSC Advances 12, nr 26 (2022): 16486–90. http://dx.doi.org/10.1039/d2ra02343a.
Pełny tekst źródłaWang, Zhen, Yan-Qun Liu, Yu-Hang Zhao, Qing-Pu Zhang, Yu-Ling Sun, Bin-Bin Yang, Jian-Hua Bu i Chun Zhang. "Highly covalent molecular cage based porous organic polymer: pore size control and pore property enhancement". RSC Advances 12, nr 26 (2022): 16486–90. http://dx.doi.org/10.1039/d2ra02343a.
Pełny tekst źródłaHan, Shao Wei, Wei Min Wang, Zheng Yi Fu i Hao Wang. "Preparation of Titanium Diboride Reticulated Porous Ceramics". Key Engineering Materials 368-372 (luty 2008): 964–66. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.964.
Pełny tekst źródłaTanaka, Daisuke, i Susumu Kitagawa. "Captured Molecules in Coordination Frameworks". MRS Bulletin 32, nr 7 (lipiec 2007): 540–43. http://dx.doi.org/10.1557/mrs2007.103.
Pełny tekst źródłaYang, Lu, Yong Dou, Zhen Zhou, Daopeng Zhang i Suna Wang. "A Versatile Porous Silver-Coordinated Material for the Heterogeneous Catalysis of Chemical Conversion with Propargylic Alcohols and CO2". Nanomaterials 9, nr 11 (5.11.2019): 1566. http://dx.doi.org/10.3390/nano9111566.
Pełny tekst źródłaRaptopoulou, Catherine P. "Metal-Organic Frameworks: Synthetic Methods and Potential Applications". Materials 14, nr 2 (9.01.2021): 310. http://dx.doi.org/10.3390/ma14020310.
Pełny tekst źródłaRaptopoulou, Catherine P. "Metal-Organic Frameworks: Synthetic Methods and Potential Applications". Materials 14, nr 2 (9.01.2021): 310. http://dx.doi.org/10.3390/ma14020310.
Pełny tekst źródłaWilliams, Teresa E., Daniela Ushizima, Chenhui Zhu, André Anders, Delia J. Milliron i Brett A. Helms. "Nearest-neighbour nanocrystal bonding dictates framework stability or collapse in colloidal nanocrystal frameworks". Chemical Communications 53, nr 35 (2017): 4853–56. http://dx.doi.org/10.1039/c6cc10183f.
Pełny tekst źródłaYun, Jonghyeok, Hong Rim Shin, Eun-Seo Won i Jong-Won Lee. "Li Metal Storage in Porous Carbon Frameworks: Effect of Li–Substrate Interaction". ECS Meeting Abstracts MA2022-01, nr 4 (7.07.2022): 529. http://dx.doi.org/10.1149/ma2022-014529mtgabs.
Pełny tekst źródłaMaji, Tapas Kumar, i Susumu Kitagawa. "Chemistry of porous coordination polymers". Pure and Applied Chemistry 79, nr 12 (1.01.2007): 2155–77. http://dx.doi.org/10.1351/pac200779122155.
Pełny tekst źródłaZhang, An-An, Xiyue Cheng, Xu He, Wei Liu, Shuiquan Deng, Rong Cao i Tian-Fu Liu. "Harnessing Electrostatic Interactions for Enhanced Conductivity in Metal-Organic Frameworks". Research 2021 (21.10.2021): 1–11. http://dx.doi.org/10.34133/2021/9874273.
Pełny tekst źródłaLin, C., C. Xiao i Z. Shen. "Nano pores evolution in hydroxyapatite microsphere during spark plasma sintering". Science of Sintering 43, nr 1 (2011): 39–46. http://dx.doi.org/10.2298/sos1101039l.
Pełny tekst źródłaSmithenry, Dennis W., Scott R. Wilson, Shirley Nakagaki i Kenneth S. Suslick. "Sorption and catalysis by robust microporous metalloporphyrin framework solids". Journal of Porphyrins and Phthalocyanines 21, nr 12 (grudzień 2017): 857–69. http://dx.doi.org/10.1142/s1088424617500791.
Pełny tekst źródłaBarsukova, Marina, Evgeny Dudko, Denis Samsonenko, Konstantin Kovalenko, Alexey Ryadun, Aleksandr Sapianik i Vladimir Fedin. "Influence of Substituents in Terephthalate Linker on the Structure of MOFs Obtained from Presynthesized Heterometallic Complex". Inorganics 9, nr 1 (2.01.2021): 4. http://dx.doi.org/10.3390/inorganics9010004.
Pełny tekst źródłaBoldyreva, O. Yu. "The propagation of surface waves in a cylindrical cavity in a saturated porous medium". Proceedings of the Mavlyutov Institute of Mechanics 5 (2007): 107–12. http://dx.doi.org/10.21662/uim2007.1.010.
Pełny tekst źródłaKim, Hyunwoo, Nayeong Kim i Jungki Ryu. "Porous framework-based hybrid materials for solar-to-chemical energy conversion: from powder photocatalysts to photoelectrodes". Inorganic Chemistry Frontiers 8, nr 17 (2021): 4107–48. http://dx.doi.org/10.1039/d1qi00543j.
Pełny tekst źródłaCarrington, Elliot J., Iñigo J. Vitórica-Yrezábal i Lee Brammer. "Crystallographic studies of gas sorption in metal–organic frameworks". Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 70, nr 3 (24.05.2014): 404–22. http://dx.doi.org/10.1107/s2052520614009834.
Pełny tekst źródłaPlonka, Anna, Debasis Banerjee, William Woerner i John Parise. "In situ studies of gas sorption in porous networks". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C1468. http://dx.doi.org/10.1107/s2053273314085313.
Pełny tekst źródłaLiu, Bo, Ya-Hui Jiang, Zhi-Sen Li, Lei Hou i Yao-Yu Wang. "Selective CO2 adsorption in a microporous metal–organic framework with suitable pore sizes and open metal sites". Inorganic Chemistry Frontiers 2, nr 6 (2015): 550–57. http://dx.doi.org/10.1039/c5qi00025d.
Pełny tekst źródłaEbrahim, Asma, Mohsen Ghali i Ahmed Abd El-Moneim. "Enhancing Thermoelectric Properties of Conductive Polymers Using Zr-Metal-Organic Frameworks Composite Materials". Materials Science Forum 1053 (17.02.2022): 104–8. http://dx.doi.org/10.4028/p-5w654u.
Pełny tekst źródłaCui, Fengjuan, Qingfang Deng i Li Sun. "Prussian blue modified metal–organic framework MIL-101(Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform". RSC Advances 5, nr 119 (2015): 98215–21. http://dx.doi.org/10.1039/c5ra18589k.
Pełny tekst źródłaSu, Hongmin, Yang Zhou, Tao Huang i Fuxing Sun. "Study on Gas Sorption and Iodine Uptake of a Metal-Organic Framework Based on Curcumin". Molecules 28, nr 13 (6.07.2023): 5237. http://dx.doi.org/10.3390/molecules28135237.
Pełny tekst źródłaSomsri, Supattra, Naoto Kuwamura, Tatsuhiro Kojima, Nobuto Yoshinari i Takumi Konno. "Self-assembly of cyclic hexamers of γ-cyclodextrin in a metallosupramolecular framework with d-penicillamine". Chemical Science 11, nr 34 (2020): 9246–53. http://dx.doi.org/10.1039/d0sc03925j.
Pełny tekst źródłaZhang, Shiji, Danqing Liu i Guangtong Wang. "Covalent Organic Frameworks for Chemical and Biological Sensing". Molecules 27, nr 8 (18.04.2022): 2586. http://dx.doi.org/10.3390/molecules27082586.
Pełny tekst źródłaArici, Mürsel, Tuğba Alp Arici, Hakan Demiral, Murat Taş i Okan Zafer Yeşilel. "A porous Zn(ii)-coordination polymer based on a tetracarboxylic acid exhibiting selective CO2 adsorption and iodine uptake". Dalton Transactions 49, nr 31 (2020): 10824–31. http://dx.doi.org/10.1039/d0dt01875a.
Pełny tekst źródłaVaidhyanathan, Ramanathan, Isaac Martens, Jian-Bin Lin, Simon S. Iremonger i George K. H. Shimizu. "Larger pores via shorter pillars in flexible layer coordination networks". Canadian Journal of Chemistry 94, nr 4 (kwiecień 2016): 449–52. http://dx.doi.org/10.1139/cjc-2015-0391.
Pełny tekst źródłaYuan, Yao, Xiaoyu Chen, Xing Zhang, Zumin Wang i Ranbo Yu. "A MOF-derived CuCo(O)@ carbon–nitrogen framework as an efficient synergistic catalyst for the hydrolysis of ammonia borane". Inorganic Chemistry Frontiers 7, nr 10 (2020): 2043–49. http://dx.doi.org/10.1039/d0qi00023j.
Pełny tekst źródłaShimizu, George, i Benjamin Gelfand. "Designing Proton Conducting Metal Organic Frameworks". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C1121. http://dx.doi.org/10.1107/s2053273314088780.
Pełny tekst źródłaGándara, Felipe, Hiroyasu Furukawa, Zhang Yue-Biao, Juncong Jiang, Wendy Queen, Matthew Hudson i Omar Yaghi. "Synthesis, structure and water sorption in Zr metal-organic frameworks". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C1240. http://dx.doi.org/10.1107/s2053273314087592.
Pełny tekst źródłaCherevko, Anton I., Igor A. Nikovskiy, Yulia V. Nelyubina, Kirill M. Skupov, Nikolay N. Efimov i Valentin V. Novikov. "3D-Printed Porous Magnetic Carbon Materials Derived from Metal–Organic Frameworks". Polymers 13, nr 22 (10.11.2021): 3881. http://dx.doi.org/10.3390/polym13223881.
Pełny tekst źródłaDalabaev, Umurdin. "Flow Simulation in a combined Region". E3S Web of Conferences 264 (2021): 01016. http://dx.doi.org/10.1051/e3sconf/202126401016.
Pełny tekst źródłaMínguez Espallargas, Guillermo, Mónica Giménez-Marqués, Néstor Calvo Galve i Eugenio Coronado. "Responsive magnetic coordination polymers: effects of gas sorption". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C905. http://dx.doi.org/10.1107/s2053273314090949.
Pełny tekst źródłaRocío-Bautista, Taima-Mancera, Pasán i Pino. "Metal-Organic Frameworks in Green Analytical Chemistry". Separations 6, nr 3 (27.06.2019): 33. http://dx.doi.org/10.3390/separations6030033.
Pełny tekst źródłaFilinchuk, Yaroslav, Nikolay Tumanov, Voraksmy Ban, Hyunchul Oh, Michael Hirscher, Bo Richter, Torben Jensen i in. "Unprecedented adsorption of molecular hydrogen in the porous hydride framework". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C1473. http://dx.doi.org/10.1107/s205327331408526x.
Pełny tekst źródłaDerakhshandeh, Parviz Gohari, Sara Abednatanzi, Karen Leus, Jan Janczak, Rik Van Deun, Pascal Van Der Voort i Kristof Van Hecke. "Ce(III)-Based Frameworks: From 1D Chain to 3D Porous Metal–Organic Framework". Crystal Growth & Design 19, nr 12 (24.10.2019): 7096–105. http://dx.doi.org/10.1021/acs.cgd.9b00949.
Pełny tekst źródłaAbazari, Reza, Soheila Sanati, Ali Morsali, Alexandra M. Z. Slawin, Cameron L. Carpenter-Warren, Wei Chen i Anmin Zheng. "Ultrafast post-synthetic modification of a pillared cobalt(ii)-based metal–organic framework via sulfurization of its pores for high-performance supercapacitors". Journal of Materials Chemistry A 7, nr 19 (2019): 11953–66. http://dx.doi.org/10.1039/c9ta01628g.
Pełny tekst źródłaLiang, Rong-Ran, Shu-Yan Jiang, Ru-Han A i Xin Zhao. "Two-dimensional covalent organic frameworks with hierarchical porosity". Chemical Society Reviews 49, nr 12 (2020): 3920–51. http://dx.doi.org/10.1039/d0cs00049c.
Pełny tekst źródłaHanikel, Nikita, Xiaokun Pei, Saumil Chheda, Hao Lyu, WooSeok Jeong, Joachim Sauer, Laura Gagliardi i Omar M. Yaghi. "Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting". Science 374, nr 6566 (22.10.2021): 454–59. http://dx.doi.org/10.1126/science.abj0890.
Pełny tekst źródłaParkinson, Bruce Alan, John Hoberg, Katie Li-Oakey i Phuoc Duong. "Selective Ion Sieving and Disorder in Membranes Constructed from Two-Dimensional Covalent Organic Frameworks". ECS Meeting Abstracts MA2022-01, nr 47 (7.07.2022): 1987. http://dx.doi.org/10.1149/ma2022-01471987mtgabs.
Pełny tekst źródłaHawxwell, Samuel M., Guillermo Mínguez Espallargas, Darren Bradshaw, Matthew J. Rosseinsky, Timothy J. Prior, Alastair J. Florence, Jacco van de Streek i Lee Brammer. "Ligand flexibility and framework rearrangement in a new family of porous metal–organic frameworks". Chem. Commun., nr 15 (2007): 1532–34. http://dx.doi.org/10.1039/b618796j.
Pełny tekst źródłaDincă, Mircea, i Jeffrey R. Long. "Introduction: Porous Framework Chemistry". Chemical Reviews 120, nr 16 (26.08.2020): 8037–38. http://dx.doi.org/10.1021/acs.chemrev.0c00836.
Pełny tekst źródła