Gotowa bibliografia na temat „Porus Framework”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Porus Framework”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Porus Framework"
Mizutani, Yoichiro, Masateru Hattori, Masahiko Okuyama, Toshihiro Kasuga i Masayuki Nogami. "Preparation of Porous Composites with a Porous Framework Using Hydroxyapatite Whiskers and Poly(L-Lactic Acid) Short Fibers". Key Engineering Materials 309-311 (maj 2006): 1079–82. http://dx.doi.org/10.4028/www.scientific.net/kem.309-311.1079.
Pełny tekst źródłaAlves Brito-Neto, Jose Geraldo, Taku Matsuzaka, Yosuke Saito i Masanori Hayase. "Porous Metal Frameworks on Silicon Substrates". Advances in Science and Technology 54 (wrzesień 2008): 416–21. http://dx.doi.org/10.4028/www.scientific.net/ast.54.416.
Pełny tekst źródłaWang, Sue-Lein. "Mesoporous Metal Phosphites with 3D Crystalline Frameworks". Acta Crystallographica Section A Foundations and Advances 70, a1 (5.08.2014): C1119. http://dx.doi.org/10.1107/s2053273314088809.
Pełny tekst źródłaLi, Pei-Zhou, Jie Su, Jie Liang, Jia Liu, Yuanyuan Zhang, Hongzhong Chen i Yanli Zhao. "A highly porous metal–organic framework for large organic molecule capture and chromatographic separation". Chemical Communications 53, nr 24 (2017): 3434–37. http://dx.doi.org/10.1039/c7cc01063j.
Pełny tekst źródłaZharkov, Evgeny. "Post-Normal Times Laboratory". Philosophy. Journal of the Higher School of Economics V, nr 4 (31.12.2021): 65–77. http://dx.doi.org/10.17323/2587-8719-2021-4-65-77.
Pełny tekst źródłaLi, Xiao-Hui, Yi-Wei Liu, Shu-Mei Liu, Shuang Wang, Li Xu, Zhong Zhang, Fang Luo, Ying Lu i Shu-Xia Liu. "A gel-like/freeze-drying strategy to construct hierarchically porous polyoxometalate-based metal–organic framework catalysts". Journal of Materials Chemistry A 6, nr 11 (2018): 4678–85. http://dx.doi.org/10.1039/c7ta10334d.
Pełny tekst źródłaWang, Zi, i Zhongyu Hou. "Room-temperature fabrication of a three-dimensional porous silicon framework inspired by a polymer foaming process". Chemical Communications 53, nr 63 (2017): 8858–61. http://dx.doi.org/10.1039/c7cc04309k.
Pełny tekst źródłaPark, Seung-Keun, Jin-Sung Park i Yun Chan Kang. "Selenium-infiltrated metal–organic framework-derived porous carbon nanofibers comprising interconnected bimodal pores for Li–Se batteries with high capacity and rate performance". Journal of Materials Chemistry A 6, nr 3 (2018): 1028–36. http://dx.doi.org/10.1039/c7ta09676c.
Pełny tekst źródłaLee, Seonghwan, Seok Jeong, Junmo Seong, Jaewoong Lim, Amitosh Sharma, Somi Won, Dohyun Moon, Seung Bin Baek i Myoung Soo Lah. "Solvent-mediated framework flexibility of interdigitated 2D layered metal–organic frameworks". Materials Chemistry Frontiers 5, nr 9 (2021): 3621–27. http://dx.doi.org/10.1039/d1qm00251a.
Pełny tekst źródłaWang, Zhen, Yan-Qun Liu, Yu-Hang Zhao, Qing-Pu Zhang, Yu-Ling Sun, Bin-Bin Yang, Jian-Hua Bu i Chun Zhang. "Highly covalent molecular cage based porous organic polymer: pore size control and pore property enhancement". RSC Advances 12, nr 26 (2022): 16486–90. http://dx.doi.org/10.1039/d2ra02343a.
Pełny tekst źródłaRozprawy doktorskie na temat "Porus Framework"
Taksande, Kiran. "Exploration of the Ionic Conduction Properties of Porous MOF Materials". Thesis, Université de Montpellier (2022-….), 2022. http://www.theses.fr/2022UMONS010.
Pełny tekst źródłaThe conductivity performance of a new series of chemically stable proton conducting Metal Organic Frameworks (MOFs) as well as a superionic molecular crystal was explored. The contribution of this PhD was to (i) select a variety of architectures and functionalities of robust MOFs/superionic molecular solids and (ii) characterize and rationalize their conducting performance over various temperature/humidity conditions. We designed two series of MOFs to achieve promising proton-conducting performance, using distinct approaches to modulate the concentration of Brønsted acidic sites and charge carriers and further boost the conductivity properties. First, a multicomponent ligand replacement strategy was successfully employed to elaborate a series of multivariate sulfonic-based solids MIP-207-(SO3H-IPA)x-(BTC)1–x which combine structural integrity with high proton conductivity values (e.g., σ = 2.6 × 10–2 S cm–1 at 363 K/95% Relative Humidity -RH-). Secondly, a proton conducting composite was prepared through the impregnation of an ionic liquid (1-Ethyl-3-methylimidazolium chloride, EMIMCl) in the mesoporous MIL-101(Cr)-SO3H. The resulting composite displaying high thermal and chemical stability, exhibits outstanding proton conductivity not only at the anhydrous state (σ473 K = 1.5 × 10-3 S cm-1) but also under humidity (σ(343 K/60%-80%RH) ≥ 0.10 S cm-1) conditions. Finally, the ionic conducting properties of another class of porous solids, considering a zirconium-formate molecular solid containing KCl ion pairs (ZF-3) were explored. ZF-3 switches from an insulator (σ = 5.1 x 10-10 S cm-1 at 363 K/0% RH) to a superionic conductor upon hydration (σ = 5.2 x 10-2 S cm-1 at 363 K/95 % RH), in relation with the boost of Cl- dynamics upon water adsorption. Noteworthy, quantum- and force-field based simulations were combined with the experimental approach to elucidate the microscopic mechanisms at the origin of the ionic conducting properties of the studied materials. This fundamental knowledge will serve to create novel robust superionic conductors with outstanding performances that will pave the way towards appealing societal applications for clean energy production
Taksande, Kiran. "Exploration of the Ionic Conduction Properties of Porous MOF Materials". Thesis, Montpellier, 2022. https://ged.scdi-montpellier.fr/florabium/jsp/nnt.jsp?nnt=2022UMONS010.
Pełny tekst źródłaThe conductivity performance of a new series of chemically stable proton conducting Metal Organic Frameworks (MOFs) as well as a superionic molecular crystal was explored. The contribution of this PhD was to (i) select a variety of architectures and functionalities of robust MOFs/superionic molecular solids and (ii) characterize and rationalize their conducting performance over various temperature/humidity conditions. We designed two series of MOFs to achieve promising proton-conducting performance, using distinct approaches to modulate the concentration of Brønsted acidic sites and charge carriers and further boost the conductivity properties. First, a multicomponent ligand replacement strategy was successfully employed to elaborate a series of multivariate sulfonic-based solids MIP-207-(SO3H-IPA)x-(BTC)1–x which combine structural integrity with high proton conductivity values (e.g., σ = 2.6 × 10–2 S cm–1 at 363 K/95% Relative Humidity -RH-). Secondly, a proton conducting composite was prepared through the impregnation of an ionic liquid (1-Ethyl-3-methylimidazolium chloride, EMIMCl) in the mesoporous MIL-101(Cr)-SO3H. The resulting composite displaying high thermal and chemical stability, exhibits outstanding proton conductivity not only at the anhydrous state (σ473 K = 1.5 × 10-3 S cm-1) but also under humidity (σ(343 K/60%-80%RH) ≥ 0.10 S cm-1) conditions. Finally, the ionic conducting properties of another class of porous solids, considering a zirconium-formate molecular solid containing KCl ion pairs (ZF-3) were explored. ZF-3 switches from an insulator (σ = 5.1 x 10-10 S cm-1 at 363 K/0% RH) to a superionic conductor upon hydration (σ = 5.2 x 10-2 S cm-1 at 363 K/95 % RH), in relation with the boost of Cl- dynamics upon water adsorption. Noteworthy, quantum- and force-field based simulations were combined with the experimental approach to elucidate the microscopic mechanisms at the origin of the ionic conducting properties of the studied materials. This fundamental knowledge will serve to create novel robust superionic conductors with outstanding performances that will pave the way towards appealing societal applications for clean energy production
Yeates, Rachel Marie. "Photoreactivity of porous metal-oxide frameworks". Thesis, University of Aberdeen, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415549.
Pełny tekst źródłaHellman, Oskar. "Synthesis of framework porous sorbents using sustainable precursors". Thesis, Uppsala universitet, Nanoteknologi och funktionella material, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445896.
Pełny tekst źródłaYu, Jierui. "PHOTOPHYSICS OF CHROMOPHORE ASSEMBLIES IN POROUS FRAMEWORKS". OpenSIUC, 2021. https://opensiuc.lib.siu.edu/dissertations/1926.
Pełny tekst źródłaHaque, Md Enamul. "Synthesis of porous carbon and porous graphene from metal-organic framework and their electrochemical properties". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/13261.
Pełny tekst źródłaMa, Shengqian. "Gas Adsorption Applications of Porous Metal-Organic Frameworks". Miami University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=miami1209411394.
Pełny tekst źródłaGrünker, Ronny, Irena Senkovska, Ralf Biedermann, Nicole Klein, Martin R. Lohe, Philipp Müller i Stefan Kaskel. "A highly porous flexible Metal–Organic Framework with corundum topology". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-138599.
Pełny tekst źródłaDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Grünker, Ronny, Irena Senkovska, Ralf Biedermann, Nicole Klein, Martin R. Lohe, Philipp Müller i Stefan Kaskel. "A highly porous flexible Metal–Organic Framework with corundum topology". Royal Society of Chemistry, 2011. https://tud.qucosa.de/id/qucosa%3A27762.
Pełny tekst źródłaDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Abdelhamid, Hani Nasser. "Lanthanide Metal-Organic Frameworks and Hierarchical Porous Zeolitic Imidazolate Frameworks : Synthesis, Properties, and Applications". Doctoral thesis, Stockholms universitet, Institutionen för material- och miljökemi (MMK), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-146398.
Pełny tekst źródłaAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 5: Manuscript.
Książki na temat "Porus Framework"
Zhu, Guangshan, i Hao Ren. Porous Organic Frameworks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45456-5.
Pełny tekst źródłaRoyal Society of Chemistry (Great Britain), red. Microporous framework solids. Cambridge [England]: RSC Publishing, 2008.
Znajdź pełny tekst źródłaBlay, Vincent, Luis Francisco Bobadilla i Alejandro Cabrera, red. Zeolites and Metal-Organic Frameworks. NL Amsterdam: Amsterdam University Press, 2018. http://dx.doi.org/10.5117/9789462985568.
Pełny tekst źródłaIndian Institute of Management, Ahmedabad., red. Privatization of ports: Framework for governmental action. Ahmedabad, India: Indian Institute of Management, 1995.
Znajdź pełny tekst źródłaMacGillivray, Leonard. Metal-organic frameworks: Design and application. Hoboken, N.J: Wiley, 2010.
Znajdź pełny tekst źródłaLeonard, MacGillivray, red. Metal-organic frameworks: Design and application. Hoboken, N.J: Wiley, 2010.
Znajdź pełny tekst źródłaDixit, Praveen M. Modeling bilateral trade flows with the static world policy simulation (SWOPSIM) modeling framework. [Washington, D.C.]: U.S. Dept. of Agriculture, Economic Research Service, International Economics Divison, 1986.
Znajdź pełny tekst źródłaDixit, Praveen M. Modeling bilateral trade flows with the static world policy simulation (SWOPSIM) modeling framework. [Washington, D.C.]: U.S. Dept. of Agriculture, Economic Research Service, International Economics Divison, 1986.
Znajdź pełny tekst źródłaDixit, Praveen M. Modeling bilateral trade flows with the static world policy simulation (SWOPSIM) modeling framework. [Washington, D.C.]: U.S. Dept. of Agriculture, Economic Research Service, International Economics Division, 1986.
Znajdź pełny tekst źródłaMetal-organic frameworks: Applications from catalysis to gas storage. Weinheim: Wiley-VCH, 2011.
Znajdź pełny tekst źródłaCzęści książek na temat "Porus Framework"
Kepert, Cameron J. "Metal-Organic Framework Materials". W Porous Materials, 1–67. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470711385.ch1.
Pełny tekst źródłaGhosh, Sujit K., i Susumu Kitagawa. "Surface Pore Engineering of Porous Coordination Polymers". W Metal-Organic Frameworks, 165–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470606858.ch5.
Pełny tekst źródłaWahad, Faiza, Zeeshan Abid, Sughra Gulzar, Syed Arfan Haider, Munazza Shahid, Muhammad Altaf i Raja Shahid Ashraf. "Triazine Porous Frameworks". W Porous Polymer Science and Applications, 121–46. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003169604-7.
Pełny tekst źródłaKundu, Tanay, Leisan Gilmanova, Wai Fen Yong i Stefan Kaskel. "Metal-Organic Frameworks for Environmental Applications". W Porous Materials, 1–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65991-2_1.
Pełny tekst źródłaHe, Yabing, Wei Zhou i Banglin Chen. "Current Status of Porous Metal-Organic Frameworks for Methane Storage". W Metal-Organic Frameworks, 163–98. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527809097.ch6.
Pełny tekst źródłaLiao, Pei-Qin, Chun-Ting He, Dong-Dong Zhou, Jie-Peng Zhang i Xiao-Ming Chen. "Porous Metal Azolate Frameworks". W The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications, 309–43. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527693078.ch11.
Pełny tekst źródłaBehrens, P. "Pores in Tetrahedral Frameworks". W Multifunctional Mesoporous Inorganic Solids, 73–97. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8139-4_7.
Pełny tekst źródłaZu, Qiaohong, i Jingwen Yan. "Innovation Framework for Green Ports". W Human Centered Computing, 295–304. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-23741-6_27.
Pełny tekst źródłaHorike, Satoshi, i Susumu Kitagawa. "Design of Porous Coordination Polymers/Metal-Organic Frameworks: Past, Present and Future". W Metal-Organic Frameworks, 1–21. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635856.ch1.
Pełny tekst źródłaDoménech-Carbó, Antonio. "Electrochemistry of Metal-Organic Frameworks". W Electrochemistry of Porous Materials, 101–12. Wyd. 2. Names: Domeénech-Carboó, Antonio, author. Title: Electrochemistry of porous materials / Antonio Domeénech Carboó. Description: Second edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780429351624-6.
Pełny tekst źródłaStreszczenia konferencji na temat "Porus Framework"
Rabbani, Harris Sajjad, Muhammad Saad Khan, M. Fahed Aziz Qureshi, Mohammad Azizur Rahman, Thomas Seers i Bhajan Lal. "Analytical Modelling of Gas Hydrates in Porous Media". W Offshore Technology Conference Asia. OTC, 2022. http://dx.doi.org/10.4043/31645-ms.
Pełny tekst źródłaGong, Xu, Chen Fang, Zhidong Li, Gordon MacIsaac i Hamed Reza Motahhari. "A Practical Approach to Model Four-Phase Flow Through Porous Media". W SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210248-ms.
Pełny tekst źródłaVentikos, Nikolaos P., Panagiotis Sotiralis, Manolis Annetis i Frank Roland. "Developing a Framework for Health Risk Assessment, by Integrating Infection and Spreading Aspects into RBD". W Public Health Congress on Maritime Transport and Ports. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/msf2022013002.
Pełny tekst źródłaKausar, Hira, Ahsan Abdul Rauf, Saima Shabbir, Shumaila Razzaque i Asad Mumtaz. "Polymer Silica Porous Framework: Design, Synthesis and Analysis". W 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST). IEEE, 2021. http://dx.doi.org/10.1109/ibcast51254.2021.9393200.
Pełny tekst źródłaSchiaffino, Arturo, Ashesh Chattopadhyay, Shaikh Tanveer Hossain, Vinod Kumar, V. M. K. Kotteda i Arturo Bronson. "Computational Study of High Temperature Liquid Metal Infusion". W ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69577.
Pełny tekst źródłaOgnjanovic, Igor, Livia Maglic i Bojana Tosic. "IT Enhanced Process Management in ports: Comprehensive Evaluation Framework". W 2021 10th Mediterranean Conference on Embedded Computing (MECO). IEEE, 2021. http://dx.doi.org/10.1109/meco52532.2021.9460144.
Pełny tekst źródłaPant, D. R., Y. Kim, J. P. S. Chhabra i S. Patel. "A Practical Framework for Evaluating the Seismic Resilience of Ports". W 8th International Symposium on Reliability Engineering and Risk Management. Singapore: Research Publishing Services, 2022. http://dx.doi.org/10.3850/978-981-18-5184-1_gs-03-121-cd.
Pełny tekst źródłaSinha, Rajarishi, Christiaan J. J. Paredis i Pradeep K. Khosla. "Supporting Design Refinement in MEMS Design". W ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/detc2002/cie-34489.
Pełny tekst źródłaArayachukiat, Sunatda, Taradon Pironchart i Kanokwan Kongpatpanich. "The Versatile and Tunable Metal-Organic Framework MOF for Condensate Decontamination". W Offshore Technology Conference Asia. OTC, 2022. http://dx.doi.org/10.4043/31664-ms.
Pełny tekst źródłaNagendra, Krishnamurthy, i Danesh K. Tafti. "Flows Through Reconstructed Porous Media Using Immersed Boundary Methods". W ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72128.
Pełny tekst źródłaRaporty organizacyjne na temat "Porus Framework"
Andrade, José E., i John W. Rudnicki. Multiscale framework for predicting the coupling between deformation and fluid diffusion in porous rocks. Office of Scientific and Technical Information (OSTI), grudzień 2012. http://dx.doi.org/10.2172/1057395.
Pełny tekst źródłaZou, Ling, Dan O'Grady, Guojun Hu i Rui Hu. Explicit Modeling of Pebble Temperature in the Porous-medium Framework for Pebble-bed Reactors Applications. Office of Scientific and Technical Information (OSTI), marzec 2021. http://dx.doi.org/10.2172/1773605.
Pełny tekst źródłaRusso, David, Daniel M. Tartakovsky i Shlomo P. Neuman. Development of Predictive Tools for Contaminant Transport through Variably-Saturated Heterogeneous Composite Porous Formations. United States Department of Agriculture, grudzień 2012. http://dx.doi.org/10.32747/2012.7592658.bard.
Pełny tekst źródłaBlack, Hayden T., i Katharine Lee Harrison. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes. Office of Scientific and Technical Information (OSTI), październik 2016. http://dx.doi.org/10.2172/1330204.
Pełny tekst źródłaMohamed, Eddaoudi, Michael Zaworotko, Brian Space i Juergen Eckert. Design and Synthesis of Novel Porous Metal-Organic Frameworks (MOFs) Toward High Hydrogen Storage Capacity. Office of Scientific and Technical Information (OSTI), maj 2013. http://dx.doi.org/10.2172/1150238.
Pełny tekst źródłaMalhotra, Suchi, Howard White, Nina de la Cruz, Ashrita Saran, John Eyers, Denny John, Ella Beveridge i Nina Blondal. Evidence and gap map-studies of the effectiveness of transport sector intervention in low and middle-income countries. Centre for Excellence and Development Impact and Learning (CEDIL), czerwiec 2022. http://dx.doi.org/10.51744/cswp3.
Pełny tekst źródłaSchneider, Kevin. Analytic Framework for Optimal Sizing of Hydrogen Fueling Stations for Heavy Duty Vehicles at Ports - CRADA 512. Office of Scientific and Technical Information (OSTI), luty 2021. http://dx.doi.org/10.2172/1827806.
Pełny tekst źródłaKidder, Michelle K., Lyndsey D. Earl i Valmor F. de Almeida. Improved Structural Design and CO2 Capture of Porous Hydroxy-Rich Polymeric Organic Frameworks. Office of Scientific and Technical Information (OSTI), kwiecień 2016. http://dx.doi.org/10.2172/1376310.
Pełny tekst źródłaKe, Jian-yu, Fynnwin Prager, Jose Martinez i Chris Cagle. Achieving Excellence for California’s Freight System: Developing Competitiveness and Performance Metrics; Incorporating Sustainability, Resilience, and Workforce Development. Mineta Transportation Institute, grudzień 2021. http://dx.doi.org/10.31979/mti.2021.2023.
Pełny tekst źródłaLee, Dongwhan, i Omar Yaghi. Selective Capture of CWAs and Containment of Their Neutralization Byproducts by Porous Frameworks Presenting Self-Amplifying and Self-Regulating Reactivities. Fort Belvoir, VA: Defense Technical Information Center, luty 2013. http://dx.doi.org/10.21236/ada584587.
Pełny tekst źródła