Artykuły w czasopismach na temat „Porous Nanocomposite”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Porous Nanocomposite”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Vanin, A. I., Yu A. Kumzerov, V. G. Solov’ev, S. D. Khanin, S. E. Gango, M. S. Ivanova, M. M. Prokhorenko, S. V. Trifonov, A. V. Cvetkov i M. V. Yanikov. "Electrical and Optical Properties of Nanocomposites Fabricated by the Introduction of Iodine in Porous Dielectric Matrices". Glass Physics and Chemistry 47, nr 3 (maj 2021): 229–34. http://dx.doi.org/10.1134/s1087659621030123.
Pełny tekst źródłaKojuch, Luana Rodrigues, Keila Machado de Medeiros, Edcleide Maria Araújo i Hélio de Lucena Lira. "Obtaining of Polyamide 6.6 Plane Membrane Application in Oil-Water Separation". Materials Science Forum 775-776 (styczeń 2014): 460–64. http://dx.doi.org/10.4028/www.scientific.net/msf.775-776.460.
Pełny tekst źródłaKowalski, K., i M. Jurczyk. "Porous Magnesium Based Bionanocomposites For Medical Application". Archives of Metallurgy and Materials 60, nr 2 (1.06.2015): 1433–35. http://dx.doi.org/10.1515/amm-2015-0147.
Pełny tekst źródłaDibazar, Zahra Ebrahimvand, Mahnaz Mohammadpour, Hadi Samadian, Soheila Zare, Mehdi Azizi, Masoud Hamidi, Redouan Elboutachfaiti, Emmanuel Petit i Cédric Delattre. "Bacterial Polyglucuronic Acid/Alginate/Carbon Nanofibers Hydrogel Nanocomposite as a Potential Scaffold for Bone Tissue Engineering". Materials 15, nr 7 (28.03.2022): 2494. http://dx.doi.org/10.3390/ma15072494.
Pełny tekst źródłaAl-Arjan, Wafa Shamsan, Muhammad Umar Aslam Khan, Samina Nazir, Saiful Izwan Abd Razak i Mohammed Rafiq Abdul Kadir. "Development of Arabinoxylan-Reinforced Apple Pectin/Graphene Oxide/Nano-Hydroxyapatite Based Nanocomposite Scaffolds with Controlled Release of Drug for Bone Tissue Engineering: In-Vitro Evaluation of Biocompatibility and Cytotoxicity against MC3T3-E1". Coatings 10, nr 11 (20.11.2020): 1120. http://dx.doi.org/10.3390/coatings10111120.
Pełny tekst źródłaRozmysłowska-Wojciechowska, Anita, Ewa Karwowska, Michał Gloc, Jarosław Woźniak, Mateusz Petrus, Bartłomiej Przybyszewski, Tomasz Wojciechowski i Agnieszka M. Jastrzębska. "Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D Ti3C2Tx MXene". Materials 13, nr 20 (15.10.2020): 4587. http://dx.doi.org/10.3390/ma13204587.
Pełny tekst źródłaPavlenko, Mykola, Valerii Myndrul, Gloria Gottardi, Emerson Coy, Mariusz Jancelewicz i Igor Iatsunskyi. "Porous Silicon-Zinc Oxide Nanocomposites Prepared by Atomic Layer Deposition for Biophotonic Applications". Materials 13, nr 8 (24.04.2020): 1987. http://dx.doi.org/10.3390/ma13081987.
Pełny tekst źródłaGerawork, Mekdes. "Remediation of textile industry organic dye waste by photocatalysis using eggshell impregnated ZnO/CuO nanocomposite". Water Science and Technology 83, nr 11 (29.04.2021): 2753–61. http://dx.doi.org/10.2166/wst.2021.165.
Pełny tekst źródłaBordun, Ihor, Krzysztof Chwastek, Dariusz Całus, Piotr Chabecki, Fedir Ivashchyshyn, Zenoviy Kohut, Anatoliy Borysiuk i Yuriy Kulyk. "Comparison of Structure and Magnetic Properties of Ni/C Composites Synthesized from Wheat Straw by Different Methods". Applied Sciences 11, nr 21 (26.10.2021): 10031. http://dx.doi.org/10.3390/app112110031.
Pełny tekst źródłaRabia, Mohamed, Amira Ben Gouider Trabelsi, Asmaa M. Elsayed i Fatemah H. Alkallas. "Porous-Spherical Cr2O3-Cr(OH)3-Polypyrrole/Polypyrrole Nanocomposite Thin-Film Photodetector and Solar Cell Applications". Coatings 13, nr 7 (12.07.2023): 1240. http://dx.doi.org/10.3390/coatings13071240.
Pełny tekst źródłaCovarrubias, Cristian, Julián Bejarano, Miguel Maureira, Cecilia Tapia, Mario Díaz, Juan P. Rodríguez, Humberto Palza i in. "Preparation of osteoinductive – Antimicrobial nanocomposite scaffolds based on poly (D,L-lactide-co-glycolide) modified with copper – Doped bioactive glass nanoparticles". Polymers and Polymer Composites 30 (styczeń 2022): 096739112210982. http://dx.doi.org/10.1177/09673911221098231.
Pełny tekst źródłaLiu, Xiaofang, Yaxin Chen, Xinrui Cui, Min Zeng, Ronghai Yu i Guang-Sheng Wang. "Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride". Journal of Materials Chemistry A 3, nr 23 (2015): 12197–204. http://dx.doi.org/10.1039/c5ta01924a.
Pełny tekst źródłaBubnov, Alexej, Alexey Bobrovsky, Ivan Rychetský, Ladislav Fekete i Věra Hamplová. "Self-Assembling Behavior of Smart Nanocomposite System: Ferroelectric Liquid Crystal Confined by Stretched Porous Polyethylene Film". Nanomaterials 10, nr 8 (30.07.2020): 1498. http://dx.doi.org/10.3390/nano10081498.
Pełny tekst źródłaRudko, G. Yu. "Comparison of the synthesis routes for the ZnO/porous silica nanocomposite". Semiconductor Physics Quantum Electronics and Optoelectronics 19, nr 4 (5.12.2016): 352–57. http://dx.doi.org/10.15407/spqeo19.04.352.
Pełny tekst źródłaHérino, Roland. "Nanocomposite materials from porous silicon". Materials Science and Engineering: B 69-70 (styczeń 2000): 70–76. http://dx.doi.org/10.1016/s0921-5107(99)00269-x.
Pełny tekst źródłaKo, Youngsang, Jeonghun Kim, Dabum Kim, Goomin Kwon, Yusuke Yamauchi i Jungmok You. "Fabrication of Highly Conductive Porous Cellulose/PEDOT:PSS Nanocomposite Paper via Post-Treatment". Nanomaterials 9, nr 4 (13.04.2019): 612. http://dx.doi.org/10.3390/nano9040612.
Pełny tekst źródłaGautam, Krishna Prasad, Debendra Acharya, Indu Bhatta, Vivek Subedi, Maya Das, Shova Neupane, Jyotendra Kunwar, Kisan Chhetri i Amar Prasad Yadav. "Nickel Oxide-Incorporated Polyaniline Nanocomposites as an Efficient Electrode Material for Supercapacitor Application". Inorganics 10, nr 6 (19.06.2022): 86. http://dx.doi.org/10.3390/inorganics10060086.
Pełny tekst źródłaMohammadpour, Mahnaz, Hadi Samadian, Nader Moradi, Zhila Izadi, Mahdieh Eftekhari, Masoud Hamidi, Amin Shavandi i in. "Fabrication and Characterization of Nanocomposite Hydrogel Based on Alginate/Nano-Hydroxyapatite Loaded with Linum usitatissimum Extract as a Bone Tissue Engineering Scaffold". Marine Drugs 20, nr 1 (23.12.2021): 20. http://dx.doi.org/10.3390/md20010020.
Pełny tekst źródłaLiu, Jin Kun, i Li Zhen Fan. "LiFePO4/Porous Carbon Nanocomposite Cathode Material for Lithium Ion Batteries". Materials Science Forum 722 (czerwiec 2012): 11–16. http://dx.doi.org/10.4028/www.scientific.net/msf.722.11.
Pełny tekst źródłaH. Ragab, Ahmed, Hala S. Hussein, Inas A. Ahmed, Khamael M. Abualnaja i Najla AlMasoud. "An Efficient Strategy for Enhancing the Adsorption of Antibiotics and Drugs from Aqueous Solutions Using an Effective Limestone-Activated Carbon–Alginate Nanocomposite". Molecules 26, nr 17 (26.08.2021): 5180. http://dx.doi.org/10.3390/molecules26175180.
Pełny tekst źródłaVasile, E., A. Serafim, D. Petre, D. Giol, P. Dubruel, H. Iovu i I. C. Stancu. "Direct Synthesis and Morphological Characterization of Gold-Dendrimer Nanocomposites Prepared Using PAMAM Succinamic Acid Dendrimers: Preliminary Study of the Calcification Potential". Scientific World Journal 2014 (2014): 1–15. http://dx.doi.org/10.1155/2014/103462.
Pełny tekst źródłaMartins, Pedro M., Joana M. Ribeiro, Sara Teixeira, Dmitri Y. Petrovykh, Gianaurelio Cuniberti, Luciana Pereira i Senentxu Lanceros-Méndez. "Photocatalytic Microporous Membrane against the Increasing Problem of Water Emerging Pollutants". Materials 12, nr 10 (21.05.2019): 1649. http://dx.doi.org/10.3390/ma12101649.
Pełny tekst źródłaIlango, K., P. Prabunathan, E. Satheeshkumar i P. Manohar. "Design of low dielectric constant polybenzoxazine nanocomposite using mesoporous mullite". High Performance Polymers 29, nr 2 (28.07.2016): 141–50. http://dx.doi.org/10.1177/0954008316632289.
Pełny tekst źródłaHerren, Blake, Mohammad Charara, Mrinal C. Saha, M. Cengiz Altan i Yingtao Liu. "Rapid Microwave Polymerization of Porous Nanocomposites with Piezoresistive Sensing Function". Nanomaterials 10, nr 2 (29.01.2020): 233. http://dx.doi.org/10.3390/nano10020233.
Pełny tekst źródłaBarbaros, Ismail, Yongmin Yang, Babak Safaei, Zhicheng Yang, Zhaoye Qin i Mohammed Asmael. "State-of-the-art review of fabrication, application, and mechanical properties of functionally graded porous nanocomposite materials". Nanotechnology Reviews 11, nr 1 (1.01.2022): 321–71. http://dx.doi.org/10.1515/ntrev-2022-0017.
Pełny tekst źródłaWang, Dong, Yong Yan, Peter Schaaf, Thomas Sharp, Sven Schönherr, Carsten Ronning i Ran Ji. "ZnO/porous-Si and TiO2/porous-Si nanocomposite nanopillars". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 33, nr 1 (styczeń 2015): 01A102. http://dx.doi.org/10.1116/1.4891104.
Pełny tekst źródłaAdhikari, Surya Prasad. "Porous metal oxide-carbon composite with hollow structure for energy storage applications". Journal of Innovations in Engineering Education 2, nr 1 (1.03.2019): 212–20. http://dx.doi.org/10.3126/jiee.v2i1.36678.
Pełny tekst źródłaAhamad, Tansir, Mu Naushad, Mohd Ubaidullah i Saad Alshehri. "Fabrication of Highly Porous Polymeric Nanocomposite for the Removal of Radioactive U(VI) and Eu(III) Ions from Aqueous Solution". Polymers 12, nr 12 (9.12.2020): 2940. http://dx.doi.org/10.3390/polym12122940.
Pełny tekst źródłaLu, Hailong, Lili Zhang, Jinxia Ma, Nur Alam, Xiaofan Zhou i Yonghao Ni. "Nano-Cellulose/MOF Derived Carbon Doped CuO/Fe3O4 Nanocomposite as High Efficient Catalyst for Organic Pollutant Remedy". Nanomaterials 9, nr 2 (16.02.2019): 277. http://dx.doi.org/10.3390/nano9020277.
Pełny tekst źródłaBakhtiari, L., Hamid Reza Rezaie, S. M. Hosseinalipour i Mohammad A. Shokrgozar. "Preparation of Porous Biphasic Calcium Phosphate-Gelatin Nanocomposite for Bone Tissue Engineering". Journal of Nano Research 11 (maj 2010): 67–72. http://dx.doi.org/10.4028/www.scientific.net/jnanor.11.67.
Pełny tekst źródłaAlzahrani, Fatimah Mohammed, Norah Salem Alsaiari, Khadijah Mohammedsaleh Katubi, Abdelfattah Amari, Abubakr M. Elkhaleefa, Faouzi Ben Rebah i Mohamed A. Tahoon. "Magnetic Nitrogen-Doped Porous Carbon Nanocomposite for Pb(II) Adsorption from Aqueous Solution". Molecules 26, nr 16 (9.08.2021): 4809. http://dx.doi.org/10.3390/molecules26164809.
Pełny tekst źródłaDavidenko, N. A., G. V. Kuznetsov i Yu S. Milovanov. "Cadmium Sulfide-Porous Silicon Nanocomposite Structures". Ukrainian Journal of Physics 58, nr 2 (luty 2013): 163–70. http://dx.doi.org/10.15407/ujpe58.02.0163.
Pełny tekst źródłaChu, Zonglin, i Stefan Seeger. "Multifunctional Hybrid Porous Micro-/Nanocomposite Materials". Advanced Materials 27, nr 47 (26.10.2015): 7775–81. http://dx.doi.org/10.1002/adma.201503502.
Pełny tekst źródłaKundana, N., M. Venkatapathy, V. Neeraja, Chandra Sekhar Espenti, Venkata Ramana Jeedi i V. Madhusudhana Reddy. "Effect of Zr-Nanofiller on Structural and Thermal Properties of PVDF-co-HFP Porous Polymer Electrolyte Membranes Doped with Mg2+ Ions". Asian Journal of Chemistry 35, nr 1 (27.12.2022): 99–108. http://dx.doi.org/10.14233/ajchem.2023.26893.
Pełny tekst źródłaZhang, Guo Ge, Hai Tao Huang, Helen Lai Wah Chan i Li Min Zhou. "Porous Barium Strontium Titanate-Titania Nanocomposites for Photocatalytic Applications". Advanced Materials Research 47-50 (czerwiec 2008): 936–39. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.936.
Pełny tekst źródłaSleptsov, V. V., L. V. Kozitov, A. O. Diteleva, D. Yu Kukushkin i A. A. Nagaev. "A new generation of nanocomposite materials based on carbon and titanium for use in supercapacitor energy storage devices". Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering 22, nr 3 (19.01.2020): 212–18. http://dx.doi.org/10.17073/1609-3577-2019-3-212-218.
Pełny tekst źródłaMukhurov, N. I., I. V. Gasenkova, S. P. Zhvavyi i E. E. Kolesnik. "Optical Characteristics of Porous Alumina Modified by Chromium Oxide". International Journal of Nanoscience 18, nr 03n04 (26.03.2019): 1940031. http://dx.doi.org/10.1142/s0219581x19400313.
Pełny tekst źródłaKarimi, Loghman. "Combination of mesoporous titanium dioxide with MoS2 nanosheets for high photocatalytic activity". Polish Journal of Chemical Technology 19, nr 2 (1.06.2017): 56–60. http://dx.doi.org/10.1515/pjct-2017-0028.
Pełny tekst źródłaQuang Dat, Do, Lam Van Nang, Chu Manh Hung, Chu Thi Xuan, Nguyen Van Duy i Nguyen Duc Hoa. "Preparation and Gas Sensing Properties of rGO/CuO Nanocomposites". ECS Journal of Solid State Science and Technology 11, nr 3 (1.03.2022): 035009. http://dx.doi.org/10.1149/2162-8777/ac5c7f.
Pełny tekst źródłaHan, Bai, Chuqi Yin, Jiaxin Chang, Yu Pang, Penghao Lv, Wei Song i Xuan Wang. "Study on the Structure and Dielectric Properties of Zeolite/LDPE Nanocomposite under Thermal Aging". Polymers 12, nr 9 (16.09.2020): 2108. http://dx.doi.org/10.3390/polym12092108.
Pełny tekst źródłaFatimah, Is, Habibi Hidayat, Gani Purwiandono, Khoirunisa Khoirunisa, Hasna Azizah Zahra, Rahmania Audita i Suresh Sagadevan. "Green Synthesis of Antibacterial Nanocomposite of Silver Nanoparticle-Doped Hydroxyapatite Utilizing Curcuma longa Leaf Extract and Land Snail (Achatina fulica) Shell Waste". Journal of Functional Biomaterials 13, nr 2 (20.06.2022): 84. http://dx.doi.org/10.3390/jfb13020084.
Pełny tekst źródłaStodolak-Zych, Ewa, Magdalena Szumera i Marta Blazewicz. "Osteoconductive Nanocomposite Materials for Bone Regeneration". Materials Science Forum 730-732 (listopad 2012): 38–43. http://dx.doi.org/10.4028/www.scientific.net/msf.730-732.38.
Pełny tekst źródłaCui, Xu, Jiayu Tian, Yin Yu, Aron Chand, Shuocheng Zhang, Qingshi Meng, Xiaodong Li i Shuo Wang. "Multifunctional Graphene-Based Composite Sponge". Sensors 20, nr 2 (7.01.2020): 329. http://dx.doi.org/10.3390/s20020329.
Pełny tekst źródłaВанина, П. Ю., A. Cizman, E. Rysiakiewicz-Pasek, A. Hoser, A. A. Набережнов i A. A. Сысоева. "Влияние ограниченной геометрии на структуру и фазовые переходы в наночастицах нитрата калия". Физика твердого тела 60, nr 3 (2018): 439. http://dx.doi.org/10.21883/ftt.2018.03.45541.11d.
Pełny tekst źródłaFort, Carmen I., Mihai M. Rusu, Lucian C. Pop, Liviu C. Cotet, Adriana Vulpoi, Monica Baia i Lucian Baia. "Preparation and Characterization of Carbon Xerogel Based Composites for Electrochemical Sensing and Photocatalytic Degradation". Journal of Nanoscience and Nanotechnology 21, nr 4 (1.04.2021): 2323–33. http://dx.doi.org/10.1166/jnn.2021.18963.
Pełny tekst źródłaIdarraga-Mora, Jaime A., Anthony S. Childress, Parker S. Friedel, David A. Ladner, Apparao Rao i Scott Husson. "Role of Nanocomposite Support Stiffness on TFC Membrane Water Permeance". Membranes 8, nr 4 (18.11.2018): 111. http://dx.doi.org/10.3390/membranes8040111.
Pełny tekst źródłaZeng, Huihui, Baolin Xing, Lunjian Chen, Guiyun Yi, Guangxu Huang, Ruifu Yuan, Chuanxiang Zhang, Yijun Cao i Zhengfei Chen. "Nitrogen-Doped Porous Co3O4/Graphene Nanocomposite for Advanced Lithium-Ion Batteries". Nanomaterials 9, nr 9 (3.09.2019): 1253. http://dx.doi.org/10.3390/nano9091253.
Pełny tekst źródłaMINAKOV, G. S., S. A. SHIROKIKH, D. YU KORNILOV i M. YU KOROLEVA. "Porous Polymer Nanocomposite Materials for Environmental Protection". Chemistry for Sustainable Development 30, nr 1 (2022): 52–63. http://dx.doi.org/10.15372/csd2022358.
Pełny tekst źródłaMINAKOV, G. S., S. A. SHIROKIKH, D. YU KORNILOV i M. YU KOROLEVA. "Porous Polymer Nanocomposite Materials for Environmental Protection". Chemistry for Sustainable Development 30, nr 1 (2022): 52–63. http://dx.doi.org/10.15372/csd2022358.
Pełny tekst źródłaWu, Zhiying, Ping Zhang, Haihui Zhang, Xiaotian Li, Yunfeng He, Peiwu Qin i Canhui Yang. "Tough porous nanocomposite hydrogel for water treatment". Journal of Hazardous Materials 421 (styczeń 2022): 126754. http://dx.doi.org/10.1016/j.jhazmat.2021.126754.
Pełny tekst źródła