Gotowa bibliografia na temat „Porous Nanocomposite”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Porous Nanocomposite”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Porous Nanocomposite"
Vanin, A. I., Yu A. Kumzerov, V. G. Solov’ev, S. D. Khanin, S. E. Gango, M. S. Ivanova, M. M. Prokhorenko, S. V. Trifonov, A. V. Cvetkov i M. V. Yanikov. "Electrical and Optical Properties of Nanocomposites Fabricated by the Introduction of Iodine in Porous Dielectric Matrices". Glass Physics and Chemistry 47, nr 3 (maj 2021): 229–34. http://dx.doi.org/10.1134/s1087659621030123.
Pełny tekst źródłaKojuch, Luana Rodrigues, Keila Machado de Medeiros, Edcleide Maria Araújo i Hélio de Lucena Lira. "Obtaining of Polyamide 6.6 Plane Membrane Application in Oil-Water Separation". Materials Science Forum 775-776 (styczeń 2014): 460–64. http://dx.doi.org/10.4028/www.scientific.net/msf.775-776.460.
Pełny tekst źródłaKowalski, K., i M. Jurczyk. "Porous Magnesium Based Bionanocomposites For Medical Application". Archives of Metallurgy and Materials 60, nr 2 (1.06.2015): 1433–35. http://dx.doi.org/10.1515/amm-2015-0147.
Pełny tekst źródłaDibazar, Zahra Ebrahimvand, Mahnaz Mohammadpour, Hadi Samadian, Soheila Zare, Mehdi Azizi, Masoud Hamidi, Redouan Elboutachfaiti, Emmanuel Petit i Cédric Delattre. "Bacterial Polyglucuronic Acid/Alginate/Carbon Nanofibers Hydrogel Nanocomposite as a Potential Scaffold for Bone Tissue Engineering". Materials 15, nr 7 (28.03.2022): 2494. http://dx.doi.org/10.3390/ma15072494.
Pełny tekst źródłaAl-Arjan, Wafa Shamsan, Muhammad Umar Aslam Khan, Samina Nazir, Saiful Izwan Abd Razak i Mohammed Rafiq Abdul Kadir. "Development of Arabinoxylan-Reinforced Apple Pectin/Graphene Oxide/Nano-Hydroxyapatite Based Nanocomposite Scaffolds with Controlled Release of Drug for Bone Tissue Engineering: In-Vitro Evaluation of Biocompatibility and Cytotoxicity against MC3T3-E1". Coatings 10, nr 11 (20.11.2020): 1120. http://dx.doi.org/10.3390/coatings10111120.
Pełny tekst źródłaRozmysłowska-Wojciechowska, Anita, Ewa Karwowska, Michał Gloc, Jarosław Woźniak, Mateusz Petrus, Bartłomiej Przybyszewski, Tomasz Wojciechowski i Agnieszka M. Jastrzębska. "Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D Ti3C2Tx MXene". Materials 13, nr 20 (15.10.2020): 4587. http://dx.doi.org/10.3390/ma13204587.
Pełny tekst źródłaPavlenko, Mykola, Valerii Myndrul, Gloria Gottardi, Emerson Coy, Mariusz Jancelewicz i Igor Iatsunskyi. "Porous Silicon-Zinc Oxide Nanocomposites Prepared by Atomic Layer Deposition for Biophotonic Applications". Materials 13, nr 8 (24.04.2020): 1987. http://dx.doi.org/10.3390/ma13081987.
Pełny tekst źródłaGerawork, Mekdes. "Remediation of textile industry organic dye waste by photocatalysis using eggshell impregnated ZnO/CuO nanocomposite". Water Science and Technology 83, nr 11 (29.04.2021): 2753–61. http://dx.doi.org/10.2166/wst.2021.165.
Pełny tekst źródłaBordun, Ihor, Krzysztof Chwastek, Dariusz Całus, Piotr Chabecki, Fedir Ivashchyshyn, Zenoviy Kohut, Anatoliy Borysiuk i Yuriy Kulyk. "Comparison of Structure and Magnetic Properties of Ni/C Composites Synthesized from Wheat Straw by Different Methods". Applied Sciences 11, nr 21 (26.10.2021): 10031. http://dx.doi.org/10.3390/app112110031.
Pełny tekst źródłaRabia, Mohamed, Amira Ben Gouider Trabelsi, Asmaa M. Elsayed i Fatemah H. Alkallas. "Porous-Spherical Cr2O3-Cr(OH)3-Polypyrrole/Polypyrrole Nanocomposite Thin-Film Photodetector and Solar Cell Applications". Coatings 13, nr 7 (12.07.2023): 1240. http://dx.doi.org/10.3390/coatings13071240.
Pełny tekst źródłaRozprawy doktorskie na temat "Porous Nanocomposite"
Zhang, Wei. "Controllable growth of porous structures from co-continuous polymer blend". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39608.
Pełny tekst źródłaGlaesemann, Benjamin Paul. "Ovalbumin-Based Scaffolds Reinforced with Cellulose Nanocrystals for Bone Tissue Engineering". Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/33905.
Pełny tekst źródłaMaster of Science
Tytarenko, A. I., D. A. Andrusenko, M. V. Isaiev i R. M. Burbelo. "Investigation of Heat Transfer in Nanocomposite Structures “PS-liquid” Using Photoacoustic Method". Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35111.
Pełny tekst źródłaLee, Jung Tae. "Chalcogen-carbon nanocomposite cathodes for rechargeable lithium batteries". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53064.
Pełny tekst źródłaKonduri, Suchitra. "Computational investigations of molecular transport processes in nanotubular and nanocomposite materials". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28281.
Pełny tekst źródłaCommittee Chair: Nair, Sankar; Committee Member: Koros, William; Committee Member: Ludovice, Peter; Committee Member: Meredith, Carson; Committee Member: Thio, Yonathan; Committee Member: Zhou, Min.
Olenych, I. B., O. I. Aksimentyeva i Yu Yu Horbenko. "Electrical Properties of Hybrid Composites Based on Poly(3,4-ethylenedioxythiophene) with ZnO and Porous Silicon Nanoparticles". Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/42552.
Pełny tekst źródłaFarghaly, Ahmed A. "Fabrication of Multifunctional Nanostructured Porous Materials". VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4189.
Pełny tekst źródłaHong, Jung Ki. "Bioactive Cellulose Nanocrystal Reinforced 3D Printable Poly(epsilon-caprolactone) Nanocomposite for Bone Tissue Engineering". Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/73353.
Pełny tekst źródłaPh. D.
Dhanya, P. "Synthesis and natural polymer precursor derived hierarchically porous conducting carbon and its Co3O4-based nanocomposite for electrochemical energy storage applications". Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2015. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/5867.
Pełny tekst źródłaMa, Hongfeng. "Étude numérique de la micro et nano structuration laser de matériaux poreux nanocomposites". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSES001.
Pełny tekst źródłaThis thesis is focused on numerical simulations of the laser interaction with porous materials. A possibility of well-controlled processing is particularly important for the laser based micro-structuring of porous glass and nano-machining of semiconducting porous materials in the presence of metallic nanoparticles. The self-consistent modeling is, therefore, focused on a detailed investigation of the involved processes. Particularly, to understand the periodic micro-void structures produced inside porous glass by femtosecond laser pulses, a detailed numerical thermodynamic analysis was performed. The calculation results show the possibility to control laser micro-machining in volume of SiO2 . Furthermore, the dimensions of laser-densified structures are examined for different focusing conditions at low pulse energies. The obtained characteristic dimensions of the structures correlate with the experimental results. Comparing to the porous glass, the mesoporous TiO2 films loaded by Ag ions and nanoparticles support localized plasmon resonances. The resulted nanocomposite films are capable to transfer free electrons and to resonantly absorb laser energy providing additional possibilities in controlling Ag nanoparticle size.To identify the optimum parameters of the continuous-wave laser, a multi-physical model considering Ag nanoparticle growth, photo-oxidation, reduction was developed. The performed simulations show that the laser writing speed controls the Ag nanoparticles size. The calculations also depicted a novel view that Ag nanoparticles grow ahead of the laser beam center due to the heat diffusion. The thermally activated fast growth followed by the photo-oxidation was found to be the main reason for the writing speed dependent sizechange and temperature rises. A three-dimensional model was developed and reproduced the laser written lines.Writing of mesoporous TiO2 films loaded with Ag nanoparticles by a pulsed laser is, furthermore, promising to provide additional possibilities in the generation of two kinds of nanostructures: laser induced periodic surface grooves (LIPSS) and Ag nanogratingsinside the TiO2 film. To better understand the effects of a pulsed laser, two multi-pulses models - one semi-analytic and another one based on a finite element method (FEM) are developed to simulate the Ag nanoparticle growth. The FEM model is shown to be precise because it better treats heat diffusion inside the TiO2 thin films. The model could be extended in future to understand the formation of LIPSS and Ag nanogratings in such media by coupling with nanoparticle migrations, surface melting and hydrodynamics. The obtained results provided new insights into laser micro-processing of porous material and better laser controlling over nanostructuring in porous semiconducting films loaded with metallic nanoparticles
Książki na temat "Porous Nanocomposite"
Yavuz, C. T. Porous Materials and Nanocomposites for Catalysis. Wiley & Sons, Limited, John, 2022.
Znajdź pełny tekst źródłaThomas, Sabu, Claudio Paoloni i Avinash R. Pai. Porous Nanocomposites for Electromagnetic Interference (EMI) Shielding. Elsevier Science & Technology, 2023.
Znajdź pełny tekst źródłaThomas, Sabu, Claudio Paoloni i Avinash R. Pai. Porous Nanocomposites for Electromagnetic Interference (EMI) Shielding. Elsevier Science & Technology, 2022.
Znajdź pełny tekst źródłaTailored Organic-Inorganic Materials. Wiley, 2015.
Znajdź pełny tekst źródłaón, Jorge L., Abraham Clearfield i Ernesto Brunet. Tailored Organic-Inorganic Materials. Wiley & Sons, Limited, John, 2015.
Znajdź pełny tekst źródłaClearfield, Abraham, Ernesto Brunet i Jorge L. ón. Tailored Organic-Inorganic Materials. Wiley & Sons, Incorporated, John, 2015.
Znajdź pełny tekst źródłaCzęści książek na temat "Porous Nanocomposite"
Girija, E. K., G. Suresh Kumar, A. Thamizhavel, Y. Yokogawa i S. Narayana Kalkura. "Fabrication of Hydroxyapatite-Calcite Nanocomposite". W Advances in Bioceramics and Porous Ceramics IV, 1–11. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118095263.ch1.
Pełny tekst źródłaChen, D., i L. Zhang. "Harmonic Vibration of Inclined Porous Nanocomposite Beams". W Lecture Notes in Civil Engineering, 497–501. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_52.
Pełny tekst źródłaRysiakiewicz-Pasek, E., R. Poprawski, A. Ciżman i A. Sieradzki. "Nanocomposite Materials – Ferroelectric Nanoparticles Incorporated into Porous Matrix". W NATO Science for Peace and Security Series B: Physics and Biophysics, 171–81. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4119-5_16.
Pełny tekst źródłaSangeetha, K., S. N. Kalkura, Y. Yokogawa, A. Thamizhavel i E. K. Girija. "Novel Porogen Free Porous Hydroxyapatite–Gelatin Nanocomposite: Synthesis and Characterization". W Springer Proceedings in Physics, 399–407. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34216-5_39.
Pełny tekst źródłaLi, Wenle, Kathy Lu i John Y. Walz. "Freezing Behavior and Properties of Freeze Cast Kaolinite-Silica Porous Nanocomposite". W Ceramic Transactions Series, 57–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118144602.ch6.
Pełny tekst źródłaDuan, Bin, William W. Lu i Min Wang. "Selective Laser Sintered Ca-P/PHBV Nanocomposite Scaffolds with Sustained Release of rhBMP-2 for Bone Tissue Engineering". W Advances in Bioceramics and Porous Ceramics IV, 37–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118095263.ch5.
Pełny tekst źródłaGhosh, G., A. Vílchez, J. Esquena, C. Solans i C. Rodríguez-Abreu. "Preparation of Porous Magnetic Nanocomposite Materials Using Highly Concentrated Emulsions as Templates". W Trends in Colloid and Interface Science XXIV, 161–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19038-4_29.
Pełny tekst źródłaGanguly, Sayan. "Role of Porous MXenes". W MXene Nanocomposites, 153–76. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003281511-8.
Pełny tekst źródłaGranitzer, Petra, i Klemens Rumpf. "Ferromagnetism and Ferromagnetic Nanocomposites". W Handbook of Porous Silicon, 1–10. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04508-5_30-1.
Pełny tekst źródłaGranitzer, Petra, i Klemens Rumpf. "Ferromagnetism and Ferromagnetic Silicon Nanocomposites". W Handbook of Porous Silicon, 1–12. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-04508-5_30-2.
Pełny tekst źródłaStreszczenia konferencji na temat "Porous Nanocomposite"
Rizvi, Reza, Hani Naguib i Elaine Biddiss. "Characterization of a Porous Multifunctional Nanocomposite for Pressure Sensing". W ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-8178.
Pełny tekst źródłaKleps, Irina, Mihaela Miu, Mihai Danila, Monica Simion, Teodora Ignat, Adina Bragaru, Lucia Dumitru i Gabriela Teodosiu. "Silver/Porous Silicon (PS) Nanocomposite Layers for Biomedical Applications". W 2006 International Semiconductor Conference. IEEE, 2006. http://dx.doi.org/10.1109/smicnd.2006.283935.
Pełny tekst źródłaTOMOV, A. V., i V. G. HUZOUSKI. "METHYL RED-POROUS GLASS NANOCOMPOSITE ELEMENTS FOR OPTICAL AMMONIA SENSORS". W Reviews and Short Notes to Nanomeeting-2005. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701947_0136.
Pełny tekst źródłaHassanin, Hany, Ali Mohammadkhani i Kyle Jiang. "Ceramic nanocomposite by electrodeposition of nickel into porous alumina matrix". W 2012 IEEE 12th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2012. http://dx.doi.org/10.1109/nano.2012.6322042.
Pełny tekst źródłaTkachenko, Georgiy V., Igor A. Sukhoivanov, Oleksiy V. Shulika i Volodymyr Tkachenko. "Tunable optical filter based on nanocomposite (liquid crystal)/(porous silicon)". W SPIE OPTO, redaktor Liang-Chy Chien. SPIE, 2012. http://dx.doi.org/10.1117/12.909380.
Pełny tekst źródłaBehdinan, Kamran, i Rasool Moradi-Dastjerdi. "Electro-Mechanical Behavior of Smart Sandwich Plates With Porous Core and Graphene-Reinforced Nanocomposite Layers". W ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10796.
Pełny tekst źródłaXue, Tao, Xiao-yi Lv, Zhen-hong Jia, Jun-wei Hou i Ji-kang Jian. "Formation and characterization of ZnS/CdS nanocomposite materials into porous silicon". W Asia Pacific Optical Communications, redaktorzy Yi Luo, Jens Buus, Fumio Koyama i Yu-Hwa Lo. SPIE, 2008. http://dx.doi.org/10.1117/12.803101.
Pełny tekst źródłaFedorin, Illia V. "Dyakonov Surface Waves at the Interface between Porous Nanocomposite and Hypercrystal". W 2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET). IEEE, 2018. http://dx.doi.org/10.1109/mmet.2018.8460289.
Pełny tekst źródłaSun, Jingyu, Shang Wang i Hongjun Wang. "Hollow porous platinum-based nanocomposite for combined tumor therapy (Conference Presentation)". W Colloidal Nanoparticles for Biomedical Applications XVIII, redaktorzy Marek Osiński i Antonios G. Kanaras. SPIE, 2023. http://dx.doi.org/10.1117/12.2651012.
Pełny tekst źródłaXiaoyong, Pan, Du Yanyan, Wang Lian, Lei Chuntang, Zhou Gang i Zhou Bing. "Particle-Stabilized High Internal Phase Emulsions as Templates for Porous Nanocomposite Materials". W 2012 Third International Conference on Digital Manufacturing and Automation (ICDMA). IEEE, 2012. http://dx.doi.org/10.1109/icdma.2012.143.
Pełny tekst źródła