Gotowa bibliografia na temat „Porous metallic materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Porous metallic materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Porous metallic materials"
Fang, Yu Cheng, H. Wang, Yong Zhou i Chun Jiang Kuang. "Development of Some New Porous Metal Materials". Materials Science Forum 534-536 (styczeń 2007): 949–52. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.949.
Pełny tekst źródłaKou, Haibo, Yaowen Gao, Jiaxing Shao, Kaiyue Dou i Nan Wang. "Temperature-porosity-dependent elastic modulus model for metallic materials". REVIEWS ON ADVANCED MATERIALS SCIENCE 61, nr 1 (1.01.2022): 769–77. http://dx.doi.org/10.1515/rams-2022-0270.
Pełny tekst źródłaZhou, Z. Y., P. Q. Chen, W. B. Zhao, M. Shao i W. Xia. "Densification model for porous metallic powder materials". Journal of Materials Processing Technology 129, nr 1-3 (październik 2002): 385–88. http://dx.doi.org/10.1016/s0924-0136(02)00697-0.
Pełny tekst źródłaMartínez, M. A., F. Velasco i J. Abenojar. "Behaviour of Fluids in Porous Materials". Materials Science Forum 802 (grudzień 2014): 303–8. http://dx.doi.org/10.4028/www.scientific.net/msf.802.303.
Pełny tekst źródłaLiu, Shi Feng, Xiao Chen Ge, Hui Ping Tang i Xin Yang. "Research Advancement of Porous Fiber Metals". Advanced Materials Research 750-752 (sierpień 2013): 569–73. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.569.
Pełny tekst źródłaChen, Jianru, i Da Zhang. "Multifunctional properties and applications of ultra-light porous metal materials". MATEC Web of Conferences 380 (2023): 01026. http://dx.doi.org/10.1051/matecconf/202338001026.
Pełny tekst źródłaWong, Pei-Chun, Sin-Mao Song, Pei-Hua Tsai, Muhammad Jauharul Maqnun, Wei-Ru Wang, Jia-Lin Wu i Shian-Ching (Jason) Jang. "Using Cu as a Spacer to Fabricate and Control the Porosity of Titanium Zirconium Based Bulk Metallic Glass Foams for Orthopedic Implant Applications". Materials 15, nr 5 (3.03.2022): 1887. http://dx.doi.org/10.3390/ma15051887.
Pełny tekst źródłaChen, Mo. "Metal Materials Research Progress of Bone Injuries Repair". Academic Journal of Science and Technology 11, nr 3 (12.07.2024): 161–64. http://dx.doi.org/10.54097/37cqt915.
Pełny tekst źródłaKim, S. Y., M. H. Lee, T. S. Kim i B. S. Kim. "Co Oxidation Properties Of Selective Dissoluted Metallic Glass Composites". Archives of Metallurgy and Materials 60, nr 2 (1.06.2015): 1227–29. http://dx.doi.org/10.1515/amm-2015-0103.
Pełny tekst źródłaHe, Jenny X., Shruti Baharani i Yong X. Gan. "Processing and Electrochemical Property Characterization of Nanoporous Electrodes for Sustainable Energy Applications". Research Letters in Nanotechnology 2009 (2009): 1–5. http://dx.doi.org/10.1155/2009/313962.
Pełny tekst źródłaRozprawy doktorskie na temat "Porous metallic materials"
Wittee, Lopes Christian. "Characterization of metallic species on porous materials by in situ XAS". Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/107953.
Pełny tekst źródłaThe aim of this thesis is to study the clustering and growth of metallic species either confined or supported in porous materials by in situ X-ray absorption spectroscopy. To accomplish this task, palladium and silver species were introduced into porous materials (¿-alumina, activated carbon and zeolites) by wetness impregnation and ion-exchange methods, respectively. Then, the clustering of these metallic species was controlled by activation treatments in different atmospheres (inert, oxidative and reductive) and followed by XAS in a comprehensive way. The principal goal of current work is to demonstrate that both XANES and EXAFS can provide valuable and, at certain point, innovative information during tuning of metallic species (in terms of type and size). Taking advantage of unusual analysis procedures, such as cumulant approach, fitting of imaginary part of Fourier transform and others, it is possible to obtain refined information about the investigated systems. In the introduction section, a compilation of studies in which XAS was used as important technique to characterize metallic species in porous materials is provided. Conscious that people can use such introduction as a basis for more complex studies in the future, the discussion has been tentatively directed toward this goal. The chapter 4 is focused on the study of the influence of palladium precursors and the nature of support on the resultant nanoparticles. The whole activation process, i.e. the transformation precursor --> nanoparticle, was followed in situ by XAS. The analysis pathway was composed by the starting point (as-impregnated), calcination in O2 flow and posterior reduction with H2. The consequence of using distinct metal precursors and supports were discussed in terms of average coordination number obtained from EXAFS data analysis, which was co-supported by laboratory characterization techniques. The chapter 5 is dedicated to the study of silver clustering during and after activation treatments using Ag-containing small-pore zeolites as precursors and nanocontainers. The influence of framework structure and chemical composition of Ag-based materials on formed Ag species at different clustering and metal redispersion conditions (calcination using distinct atmospheres, reduction in H2, redispersion in O2) were studied using either in situ or ex situ characterization methods. After, the catalytic consequences of tuned Ag-containing zeolites in SCO-NH3 are discussed. In this section, the combination of in situ XAS with several laboratory techniques proved to be pivotal to have a full picture of the investigated system. Finally, a list of projects developed in parallel to this thesis is provided at the end of this document.
L'objectiu d'aquesta tesi és estudiar l'agrupació i el creixement d'espècies metàl·liques confinades o suportades en materials porosos mitjançant espectroscòpia d'absorció de raigs X in situ. Per a això, les espècies de pal·ladi i plata s'han introduït en materials porosos (¿-alúmina, carbó activat i zeolites) per mitjà de la impregnació via humida i mètodes d'intercanvi iònic, respectivament. Una vegada preparats els materials, l'agrupament de les espècies metàl·liques s'ha controlat fent ús de tractaments d'activació en diferents atmosferes (inert, oxidant i reductora) s'ha estudiat exhaustivament per XAS. L'objectiu principal del treball és demostrar que tant el XANES com l'EXAFS proporcionen informació rellevant i, en certa manera, innovadora per al control d'espècies metàl·liques (en termes de tipus i grandària d'aquestes espècies). Fent ús de procediments de tractament de dades no molt habituals com l'anàlisi de cumulants, l'ajust de la part imaginària de la transformada de Fourier i altres, és possible obtenir informació detallada sobre els sistemes estudiats. En l'apartat de la introducció, es proporciona una recopilació d'estudis en els quals s'ha utilitzat XAS com a tècnica principal per a caracteritzar les anomenades espècies metàl·liques en materials porosos. Aquesta introducció ha estat redactada per a que puga servir com a punt de partida per a futurs estudis que requereixen la utilització de XAS per a la caracterització de les espècies metàl·liques presents en els catalitzadors. El capítol 4 es centra en l'estudi de la influència dels precursors de pal·ladi i la naturalesa del suport front a les nanopartícules resultants. El procés d'activació, és a dir, la transformació precursor --> nanopartícula, ha sigut estudiat per XAS in situ. L'anàlisi per XAS va comprendre els següents passos: punt de partida (material impregnat), calcinació en flux d'O2 i reducció posterior amb H2. La utilització de diferents precursors i suports metàl·lics ha permès dur a terme una discussió, referent al nombre de coordinació mitjà obtingut a partir de l'anàlisi de dades de la zona EXAFS, que ha estat recolzat per altres tècniques de caracterització. El capítol 5 s'ha dedicat a l'estudi de l'agrupació de plata intercanviada en els catalitzadors durant i després dels tractaments d'activació. S'han utilitzat zeolites de porus xicotet, com la CHA i RHO, intercanviades amb plata. L'estudi de la influència de l'estructura zeolítica i la composició química dels materials enfront dels diferents tractaments d'activació (calcinació utilitzant diferents atmosferes, reducció en presència d'H2, re-dispersió en atmosfera d'O2) es va realitzar fent ús de mètodes de caracterització in situ o ex situ. A continuació, es discuteix la influència d'aquestes espècies metàl·liques formades, utilitzant els diferents mètodes d'activació, per a la reacció d'SCO-NH3. En aquest sentit, s'ha demostrat que la combinació de XAS in situ amb diverses tècniques habituals de laboratori és fonamental per al desenvolupament d'aquest treball. Finalment, es presenta una llista de projectes, en els quals també s'ha treballat paral·lelament, on s'ha utilitzat XAS com a tècnica de caracterització.
Wittee Lopes, C. (2018). Characterization of metallic species on porous materials by in situ XAS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/107953
TESIS
Brennan, Daniel P. "Small molecule and polymer templating of inorganic materials". Diss., Online access via UMI:, 2006.
Znajdź pełny tekst źródłaGuazzone, Federico. "Engineering of Substrate Surface for the synthesis of Ultra-Thin Composite Pd and Pd-Cu Membranes for H2 Separation". Digital WPI, 2006. https://digitalcommons.wpi.edu/etd-dissertations/442.
Pełny tekst źródłaCaputo, Matthew P. "4-Dimensional Printing and Characterization of Net-Shaped Porous Parts Made from Magnetic Ni-Mn-Ga Shape Memory Alloy Powders". Youngstown State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1525436335401265.
Pełny tekst źródłaZhang, Liping. "Development of Bismuth Oxide-Based Materials for Iodide Capture and Photocatalysis". Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent1542652670479038.
Pełny tekst źródłaPoudyel, Ghimire Pramila. "DEVELOPMENT OF PHENOLIC RESIN-DERIVED CARBONS AND THEIR COMPOSITES WITH TAILORED COMPOSITION, POROSITY AND MORPHOLOGY". Kent State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=kent157384419976016.
Pełny tekst źródłaCuzacq, Laurent. "Élaboration et caractérisation de matériaux métalliques poreux par fabrication additive par dépôt de matière (Extrusion Additive Manufacturing) et par métallurgie des poudres". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0144.
Pełny tekst źródłaIn this manuscript, we employ a technique called paste extrusion additive manufacturing to reduce production costs and raw material losses associated with laser 3D printing. This technique involves incorporating metallic powder into a gel composed of a polymer and a solvent. In our case, we use a gel of hydroxypropylcellulose (HPC) in butanol and incorporate aluminum powder or a mixture of aluminum-based powders. This paste is then loaded into a syringe and placed in the 3D printer to extrude filaments through a 0.86 mm diameter nozzle. These filaments are deposited and stacked by the 3D printer's mechanical arm to form objects of predetermined shapes. Once dried, the objects are thermally treated to remove the HPC, leaving only the aluminum. We chose to fabricate objects with both macroporosity and microporosity to increase the surface area for exchange with the external environment. The thermal dissipation properties of these objects were measured to assess their suitability as heat sinks in the electronics field. The measured properties of these objects were found to be superior to those of a dense aluminum block. Objects composed of a mixture of aluminum and AlSi12 were also successfully printed and exhibited excellent thermal dissipation properties.In the second part of this manuscript, we focused on the end-of-life of our materials. Recycling aluminum alloys is challenging because with each recycling cycle, a loss of alloying elements may occur. Therefore, it is necessary to consider ways to valorize end-of-life aluminum or aluminum-based alloy waste. For this purpose, model materials were synthesized via powder metallurgy. By controlling the time, temperature, and pressure applied during sintering, it was possible to control the porosity within the samples. Through a chemical reaction in an aqueous solution of sodium hydroxide, we were able to generate hydrogen, which could then be used as fuel in vehicles (such as the Toyota Mirai, for example). We also demonstrated that the kinetics of hydrogen release could be controlled by manipulating the porosity rate within the samples. Finally, we worked on an Al-Mg alloy to generate hydrogen not in caustic soda, which is a highly aggressive medium, but in seawater. This latter result demonstrates that valorizing aluminum alloy waste is feasible in a minimally toxic and abundant environment on Earth's surface
Junqueira, Silvio Luiz de Mello. "Caracterização numerica e experimental da atenuação da radiação laser em espuma metalica". [s.n.], 1996. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265058.
Pełny tekst źródłaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-11-08T18:36:48Z (GMT). No. of bitstreams: 1 Junqueira_SilvioLuizdeMello_D.pdf: 23366873 bytes, checksum: 40ff350275cdc60184b7883f90658798 (MD5) Previous issue date: 1996
Resumo: O presente trabalho trata do estudo teórico e experimental dos efeitos térmicos causados pela aplicação da radiação laser sobre meios porosos e objetiva a determinação do coeficiente de atenuação de um meio poroso imerso em fluido. O modelamento matemático proposto utiliza a técnica dos volumes finitos, para resolver numericamente a equação do transporte do calor em coordenadas.cilíndricas. Um sistema de aquisição de dados baseado no conceito de instrumentos virtuais é elaborado para analisar o processo de aquecimento pela radiação de um laser de Argônio sobre uma matriz porosa de Alumínio 6101 imersa em quatro fluidos diferentes: ar, água, óleo polialfaolefina e Mercúrio. Uma metodologia inversa, estabelecida pela comparação de resultados numéricos e experimentais, é empregada para obter o coeficiente de atenuação da espuma metálica saturada. A análise inclui o emprego de duas metodologias de cálculo da condutividade térmica equivalente. Uma correlação entre os coeficientes de atenuação e um número de Prandtl equivalente do meio poroso é estabelecida
Abstract: In the present work, an investigation of thermal effects due to laser application is accomplished in order to determine the attenuation coeflicient of a porous matrix immersed in fluido The study included both theoretical and experimental analisys. In the theoretical analisys a numerical mo deI based on control volume method is developed to simulate the lasing process by solving the energy equation in cilindrical coordinates. A data acquisition system based on virtual instruments concept is elaborated to analyse the heating process result,ing from Argon Laser radiation over an Aluminum foam porous medium immersed in four different fluids, namely air, water, polyalphaolefin oil and Mercury. An inverse methodology, estabilished by comparison of numerical and experimental results, is used to obtain the attenuation coeflicient of the saturated metal foam. Calculations also included the use of two models for the effective thermal conductivity. Results indicated the existence of a linear correlation between laser attenuation and a defined equivalent Prandtl number
Doutorado
Termica e Fluidos
Doutor em Engenharia Mecânica
Wollmann, Philipp, Matthias Leistner, Ulrich Stoeck, Ronny Grünker, Kristina Gedrich, Nicole Klein, Oliver Throl i in. "High-throughput screening: speeding up porous materials discovery". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-138648.
Pełny tekst źródłaDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Starykevich, Maksim. "Electrosynthesis of 1-D metallic nanoparticles from DES using porous anodic templates". Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/21694.
Pełny tekst źródłaO método de síntese de nanoparticulas 1-D assistido por um modelo tornou-se um tópico em voga na química após o desenvolvimento de filmes anódicos com poros bem ordenados. Contudo, a maioria dos trabalhos nesta área tem sido feita utilizando filmes porosos destacados devido à presença de uma barreira no fundo dos poros. No entanto, esta estratégia segue demasiados passos, o que aumenta o seu custo, torna mais difícil a execução e impõe várias limitações. Consequentemente, existe a necessidade de uma técnica que permita o enchimento (electrofilling) dos tubos sem remover a camada barreira – esta tese representa o nosso contributo para esse trabalho. Utilizámos uma técnica mais simples que permite a electrodeposição e “electrofilling” de nanoestruturas directamente nos modelos sobre o substrato metálico, utilizando solventes eutécticos profundos à base de cloreto de colina como electrólito. Relativamente à água, os solventes eutécticos profundos demonstram superior estabilidade térmica e uma janela electroquímica mais alargada, o que aumenta o número de materais secundários depositados. Como materiais a investigar foram escolhidos titânia e alumina dada a sua capacidade para formar estruturas porosas altamente ordenadas, propriedades eletroquímicas distintas e uso generalizado em síntese assistida por padrão. O estudo aqui apresentado encontra-se dividido em duas etapas. Primeiramente, a influência da camada barreira foi investigada em sistemas modelo através da utilização de filmes barreira densos na superfície dos elétrodos. Para os filmes de alumina e titânia, identificaram-se vários parâmetros que afectam a electrodeposição, dos quais se destacam a influência da voltagem de anodização, a espessura da camada de barreira, a dupla camada eléctrica e o perfil de corrente. Durante esta etapa detectaram-se efeitos nefastos, como a formação de uma densa camada orgânica na superfície do eléctrodo, que foram ultrapassados aumentando a temperatura ou alternando o potencial aplicado. A segunda etapa consistiu em passar de elétrodos planos (primeira etapa) para modelos porosos (segunda etapa). Foi realizado, com sucesso, o preenchimento dos poros de alumina e dos poros de titânia. Parâmetros como o perfil de corrente, temperatura de solução, entre outras, foram ajustadas para melhorar o fator de preenchimento e a homogeneidade do preenchimento. Foi desenvolvido um processo de preenchimento de moldes de alumina anódica em duas etapas, nucleação AC (1º passo) e preenchimento galvanostático (2º passo). Foram utilizadas três condições diferentes de modelos de titânia anódica porosa no “electrofilling”. O primeiro é sem modificação e demonstrou que a electroredução do zinco ocorre de forma aleatória ao longo de todo o comprimento do poro, o que leva ao fecho do poro e a um enchimento não homogéneo. A segunda modificação, cristalização total por têmpera, permite a preparação de estruturas coaxiais devido à deposição uniforme de zinco nas paredes dos poros. A última modificação foi a cristalização selectiva do fundo do poro. Foi descoberto que uma anodização adicional em eletrólitos não agressivos leva à cristalização da parte barreira dos tubos (fundo) e, consequentemente, a maior condutividade na parte inferior do que nas paredes. Este efeito permite um enchimento ascendente dos modelos porosos de titânia. As estratégias aqui apresentadas alargam a gama de possibilidades para a aplicação de modelos porosos anódicos na electrodeposição de diferentes nanoestruturas.
The template assisted method of 1-D nanoparticles synthesis has become a hot topic in Chemistry after the development of high-ordered porous anodic films. Most studies in this field have focused on the use of detached porous films due to the presence of the barrier layer on the pore bottom. However, this strategy follows a great number of steps, which raises its cost while decreasing convenience of operation and imposing several limitations. Consequently, there is a need for a technique which allows electrofilling of tubes without removing the barrier layer – this thesis represents our contribution to that enterprise. We have devised a simpler technique which allows electrodeposition of nanostructures directly in the templates on metallic substrate, using choline chloride based deep eutectic solvents (DES) as electrolyte. Compared to water, DES have improved thermal stability and a wider electrochemical window, dramatically increasing the number of possible secondary materials deposited. Titania and alumina were chosen as materials under study due to their known capacity to form highly-ordered porous structures, different electrochemical profiles and widespread use in template assisted synthesis. The present work is divided in two parts. First, the influence of the barrier layer has been investigated by using dense barrier films on the electrode surface as a model system. For both alumina and titania films, several parameters affecting the electrodeposition of zinc have been identified, notably the influence of the anodization voltage, barrier layer thickness, electrical double layer and current profile. During this stage, some negative effects have been detected, such as a dense organic layer formation on electrode surface, a hurdle which has been overcome by either increasing the temperature or applying the alternating potential. The second stage consisted in transferring the method from the flat electrodes (the first stage) to the porous templates. The successful filling of both porous alumina and porous titania, has been achieved. Parameters such as current profile, solution temperature, among others, have been tuned to improve the fill factor and homogeneity of the filling. A two-step porous anodic alumina template filling with AC nucleation (1st step) and galvanostatic filling (2nd step) has been developed. Three different types of porous anodic titania templates have been used for electrofilling. The first one was used as-prepared, showing that zinc electroreduction occurs in random places along all pore length, resulting in pore sealing and non-homogeneous filling. The second modification, full crystallization by annealing, allows the preparation of coaxial structures due to uniform zinc deposition on the pore walls. The last modification is selective bottom crystallization. It has been found that additional anodization in unaggressive electrolytes leads to crystallization of the barrier (bottom) part of the tubes and, thus, to higher conductivity of the bottom part than that of the walls. This effect allows a bottom-up filling of the titania porous template. The strategies presented here widen the range of possibilities for the application of porous anodic templates in the electrodeposition of different nanostructures.
Książki na temat "Porous metallic materials"
Gultekin, Goller, i United States. National Aeronautics and Space Administration., red. Wear and friction behavior of metal impregnated microporous carbon composites. [Washington, D.C: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródłaPorous Metals and Metallic Foams. Trans Tech Publications, Limited, 2018.
Znajdź pełny tekst źródłaWear and friction behavior of metal impregnated microporous carbon composites. [Washington, D.C: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródłaMetals & Materials Society Minerals. Proceedings of the 11th International Conference on Porous Metals and Metallic Foams (MetFoam 2019). Springer, 2020.
Znajdź pełny tekst źródłaRabjei, Afsaneh. Porous Metals and Metallic Foams: 8th International Conference, June 23-26, 2013, Raleigh, North Carolina. DEStech Publications, Incorporated, 2013.
Znajdź pełny tekst źródłaCzęści książek na temat "Porous metallic materials"
Cazacu, Oana, Benoit Revil-Baudard i Nitin Chandola. "Anisotropic Plastic Potentials for Porous Metallic Materials". W Solid Mechanics and Its Applications, 503–81. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92922-4_8.
Pełny tekst źródłaAbe, Hiroya, i Kazuyoshi Sato. "Syntheses of Composite Porous Materials for Solid Oxide Fuel Cells". W Novel Structured Metallic and Inorganic Materials, 315–27. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7611-5_21.
Pełny tekst źródłaPolyakov, Victor V., Sergei V. Kucheryavski i Alexander V. Egorov. "Investigation of Fractal Properties of the Microstructure of Porous Metal Materials". W Metal Matrix Composites and Metallic Foams, 7–10. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527606203.ch2.
Pełny tekst źródłaRodríguez-Méndez, Francisco, Bruno Chiné i Marcela Meneses-Guzmán. "Thermo-mechanical Stress Modeling of La(Fe,Co,Si)13 Thin Films Deposited on Porous Structures". W Proceedings of the XV Ibero-American Congress of Mechanical Engineering, 84–90. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-38563-6_13.
Pełny tekst źródłaSingh, Nand Kishore, Shashi Kant Kumar, Satish K. S. N. Idury, K. K. Singh i Ratneshwar Jha. "Dynamic Compression Response of Porous Zirconium-Based Bulk Metallic Glass (Zr41Ti14Cu12.5Ni10Be22.5) Honeycomb: A Numerical Study". W Structural Integrity of Additive Manufactured Materials & Parts, 308–21. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2020. http://dx.doi.org/10.1520/stp163120190136.
Pełny tekst źródłaWong, Ka C. "From Angel Food Cake to Porous Titanium – A Novel Powder Metallurgical Approach for Metallic Foam Utilizing Food Processing and Ceramic Processing Techniques". W Materials Science Forum, 353–56. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-462-6.353.
Pełny tekst źródłaKitazono, Koichi, Keiji Matsuo, Takuya Hamaguchi i Yuta Fujimori. "Design of Energy-Absorbing Materials for Space Crafts Based on Voronoi Diagrams". W Proceedings of the 11th International Conference on Porous Metals and Metallic Foams (MetFoam 2019), 3–10. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42798-6_1.
Pełny tekst źródłaZhou, Jikou. "Porous Metallic Materials". W Advanced Structural Materials, 103–24. CRC Press, 2006. http://dx.doi.org/10.1201/9781420017465.ch5.
Pełny tekst źródła"Porous Metallic Materials". W Advanced Structural Materials, 115–36. CRC Press, 2006. http://dx.doi.org/10.1201/9781420017465-9.
Pełny tekst źródła"Porous Coatings on Metallic Implant Materials". W Materials for Medical Devices, 307–19. ASM International, 2012. http://dx.doi.org/10.31399/asm.hb.v23.a0005656.
Pełny tekst źródłaStreszczenia konferencji na temat "Porous metallic materials"
Amoafo-Yeboah, N. T. "Surface Emissivity Effect on the Performance of Composite Metal Foam against Torch Fire Environment". W Porous Metals and Metallic Foams. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903094-1.
Pełny tekst źródłaChacko, Z. "Thermal Conductivity of Steel-Steel Composite Metal Foam through Computational Modeling". W Porous Metals and Metallic Foams. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903094-3.
Pełny tekst źródłaCance, J. C. "Characterization of 316L Stainless Steel Composite Metal Foam Joined by Solid-State Welding Technique". W Porous Metals and Metallic Foams. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903094-2.
Pełny tekst źródładel Val, J., A. Riveiro, R. Comesaña, F. Lusquiños, M. Bountinguiza, F. Quintero i J. Pou. "Laser-assisted manufacturing of porous metallic structures". W ICALEO® 2012: 31st International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2012. http://dx.doi.org/10.2351/1.5062413.
Pełny tekst źródłaChen, Qiyong, Enqiang Lin, Victor K. Champagne, Aaron Nardi i Sinan Müftü. "Impact Mechanics of Spherical Metallic Particles with Uniformly Distributed Porosity". W ITSC2019, redaktorzy F. Azarmi, K. Balani, H. Koivuluoto, Y. Lau, H. Li, K. Shinoda, F. Toma, J. Veilleux i C. Widener. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.itsc2019p0846.
Pełny tekst źródłaZhang, Bo, i Jian Zhu. "Inverse methods of determining the acoustical parameters of porous sound absorbing metallic materials". W 22nd International Congress on Acoustics: Acoustics for the 21st Century. Acoustical Society of America, 2016. http://dx.doi.org/10.1121/2.0000329.
Pełny tekst źródłaKNAAK, K. "Micro-mechanical study of damage evolution in isotropic metallic materials". W Material Forming. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902479-155.
Pełny tekst źródłaLee, Shen Huei Wynton, Hui Leng Choo, Sui Him Mok, Xin Yi Cheng i Yupiter Harangan Prasada Manurung. "Fabrication of porous metallic materials by controlling the processing parameters in selective laser melting process". W 13TH INTERNATIONAL ENGINEERING RESEARCH CONFERENCE (13TH EURECA 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001632.
Pełny tekst źródłaRiveiro, A., F. Lusquiños, R. Comesaña, F. Quintero i J. Pou. "Obtaining thermal damping metallic porous coating on ceramics by means of supersonic laser spray technique". W ICALEO® 2008: 27th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2008. http://dx.doi.org/10.2351/1.5061233.
Pełny tekst źródłaJeng, T. M., T. Y. Wu, P. L. Chen, S. F. Chang i Y. H. Hung. "Flow Friction Behavior in Porous Channels". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80168.
Pełny tekst źródła