Gotowa bibliografia na temat „Poroelastodynamics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Poroelastodynamics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Poroelastodynamics"
Schanz, Martin. "Fast multipole method for poroelastodynamics". Engineering Analysis with Boundary Elements 89 (kwiecień 2018): 50–59. http://dx.doi.org/10.1016/j.enganabound.2018.01.014.
Pełny tekst źródłaQi, Quan, i Thomas L. Geers. "Doubly asymptotic approximations for transient poroelastodynamics". Journal of the Acoustical Society of America 102, nr 3 (wrzesień 1997): 1361–71. http://dx.doi.org/10.1121/1.420097.
Pełny tekst źródłaIgumnov, Leonid A., Andrey Petrov i Alexander V. Amenitskiy. "Laplace Domain Boundary Element Method for 3D Poroelastodynamics". Applied Mechanics and Materials 709 (grudzień 2014): 117–20. http://dx.doi.org/10.4028/www.scientific.net/amm.709.117.
Pełny tekst źródłaIgumnov, Leonid A., Svetlana Litvinchuk, Andrey Petrov i Alexander A. Belov. "Boundary-Element Modeling of 3-D Poroelastic Half-Space Dynamics". Advanced Materials Research 1040 (wrzesień 2014): 881–85. http://dx.doi.org/10.4028/www.scientific.net/amr.1040.881.
Pełny tekst źródłaLiu, Chao. "Fundamental solutions to the transversely isotropic poroelastodynamics Mandel's problem". International Journal for Numerical and Analytical Methods in Geomechanics 45, nr 15 (24.07.2021): 2260–83. http://dx.doi.org/10.1002/nag.3265.
Pełny tekst źródłaOzyazicioglu, Mehmet. "Sudden Pressurization of a Spherical Cavity in a Poroelastic Medium". Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/632634.
Pełny tekst źródłaIgumnov, L. A., S. Yu Litvinchuk i Ya Yu Rataushko. "3D POROELASTODYNAMICS MODELINGWITH THE HELP OF TIME-STEPPING BOUNDARY ELEMENT SCHEME". Problems of Strength and Plasticity 76, nr 3 (2014): 198–204. http://dx.doi.org/10.32326/1814-9146-2014-76-3-198-204.
Pełny tekst źródłaChou, Dean, i Po-Yen Chen. "A machine learning method to explore the glymphatic system via poroelastodynamics". Chaos, Solitons & Fractals 178 (styczeń 2024): 114334. http://dx.doi.org/10.1016/j.chaos.2023.114334.
Pełny tekst źródłaVorobtsov, Igor, Aleksandr Belov i Andrey Petrov. "Development of boundary-element time-step scheme in solving 3D poroelastodynamics problems". EPJ Web of Conferences 183 (2018): 01042. http://dx.doi.org/10.1051/epjconf/201818301042.
Pełny tekst źródłaIgumnov, L. A., A. N. Petrov i I. V. Vorobtsov. "Analysis of 3D poroelastodynamics using BEM based on modified time-step scheme". IOP Conference Series: Earth and Environmental Science 87 (październik 2017): 082022. http://dx.doi.org/10.1088/1755-1315/87/8/082022.
Pełny tekst źródłaRozprawy doktorskie na temat "Poroelastodynamics"
Bagur, Laura. "Modeling fluid injection effects in dynamic fault rupture using Fast Boundary Element Methods". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAE010.
Pełny tekst źródłaEarthquakes due to either natural or anthropogenic sources cause important human and material damage. In both cases, the presence of pore fluids influences the triggering of seismic instabilities.A new and timely question in the community is to show that the earthquake instability could be mitigated by active control of the fluid pressure. In this work, we study the ability of Fast Boundary Element Methods (Fast BEMs) to provide a multi-physic large-scale robust solver required for modeling earthquake processes, human induced seismicity and their mitigation.In a first part, a Fast BEM solver with different temporal integration algorithms is used. We assess the performances of various possible adaptive time-step methods on the basis of 2D seismic cycle benchmarks available for planar faults. We design an analytical aseismic solution to perform convergence studies and provide a rigorous comparison of the capacities of the different solving methods in addition to the seismic cycles benchmarks tested. We show that a hybrid prediction-correction / adaptive time-step Runge-Kutta method allows not only for an accurate solving but also to incorporate both inertial effects and hydro-mechanical couplings in dynamic fault rupture simulations.In a second part, once the numerical tools are developed for standard fault configurations, our objective is to take into account fluid injection effects on the seismic slip. We choose the poroelastodynamic framework to incorporate injection effects on the earthquake instability. A complete poroelastodynamic model would require non-negligible computational costs or approximations. We justify rigorously which predominant fluid effects are at stake during an earthquake or a seismic cycle. To this aim, we perform a dimensional analysis of the equations, and illustrate the results using a simplified 1D poroelastodynamic problem. We formally show that at the timescale of the earthquake instability, inertial effects are predominant whereas a combination of diffusion and elastic deformation due to pore pressure change should be privileged at the timescale of the seismic cycle, instead of the diffusion model mainly used in the literature
Części książek na temat "Poroelastodynamics"
Cheng, Alexander H. D. "Poroelastodynamics". W Poroelasticity, 475–571. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25202-5_9.
Pełny tekst źródłaSchanz, Martin. "Poroelastodynamic boundary element formulation". W Wave Propagation in Viscoelastic and Poroelastic Continua, 77–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44575-3_6.
Pełny tekst źródłaDomínguez, J., i R. Gallego. "Boundary Element Approach to Coupled Poroelastodynamic Problems". W Solid Mechanics and Its Applications, 125–42. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8698-6_7.
Pełny tekst źródłaSchanz, Martin, i Dobromil Pryl. "Boundary Element Formulations for Linear Poroelastodynamic Continua". W Analysis and Simulation of Multifield Problems, 323–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36527-3_39.
Pełny tekst źródłaCliment, Natalia, Ionut Moldovan i António Gomes Correia. "FreeHyTE: A Hybrid-Trefftz Finite Element Platform for Poroelastodynamic Problems". W Lecture Notes in Civil Engineering, 73–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77230-7_7.
Pełny tekst źródłaPryl, Dobromil, Martin Schanz i Lars Kielhorn. "Poroelastodynamic Boundary Element Method in time domain". W Poromechanics III - Biot Centennial (1905-2005). Taylor & Francis, 2005. http://dx.doi.org/10.1201/noe0415380416.ch58.
Pełny tekst źródłaStreszczenia konferencji na temat "Poroelastodynamics"
Liu, Chao, i Dung T. Phan. "Determination of the Connected and Isolated Porosities by a Poroelastodynamics Model". W International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-23741-ea.
Pełny tekst źródłaSchanz, M. "Fast Multipole Accelerated Boundary Element Method for Poroelastodynamics". W Sixth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480779.210.
Pełny tekst źródłaLiu, Chao. "Anisotropic Poroelastodynamics Solution and Elastic Moduli Dispersion of a Naturally Fractured Rock". W Middle East Oil, Gas and Geosciences Show. SPE, 2023. http://dx.doi.org/10.2118/213366-ms.
Pełny tekst źródłaIpatov, A. A., L. A. Igumnov, F. Dell’Isola i S. Yu Litvinchuk. "Application of modified Durbun’s algorithm in solving poroelastodynamic problems via boundary element method". W INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0027676.
Pełny tekst źródłaShih, Po-Jen, i Meng-Cheng Ho. "Modified Steepest-Descent Path Method in Solving Weyl Integration Representation of Vector Wave Bases". W ASME 2012 Noise Control and Acoustics Division Conference at InterNoise 2012. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ncad2012-1217.
Pełny tekst źródłaLiu, Y., V. Dokhani, Y. Ma, H. Miao i S. Zamiran. "Effects of Dynamic Surge Pressure on Wellbore Stability". W 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0164.
Pełny tekst źródła