Gotowa bibliografia na temat „Population genetic connectivity”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Population genetic connectivity”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Population genetic connectivity"
Putri, S. N. N., G. R. Maharani, M. Farhan, D. F. Lestari, H. Madduppa, B. Subhan, D. Arafat i in. "Population connectivity and genetic diversity population connectivity of Rabbitfish (Siganus canaliculatus) among Bangladesh, China and Indonesia". IOP Conference Series: Earth and Environmental Science 1033, nr 1 (1.06.2022): 012043. http://dx.doi.org/10.1088/1755-1315/1033/1/012043.
Pełny tekst źródłaMarandel, Florianne, Pascal Lorance, Marco Andrello, Grégory Charrier, Sabrina Le Cam, Sigrid Lehuta i Verena M. Trenkel. "Insights from genetic and demographic connectivity for the management of rays and skates". Canadian Journal of Fisheries and Aquatic Sciences 75, nr 8 (sierpień 2018): 1291–302. http://dx.doi.org/10.1139/cjfas-2017-0291.
Pełny tekst źródłaJangjoo, Maryam, Stephen F. Matter, Jens Roland i Nusha Keyghobadi. "Connectivity rescues genetic diversity after a demographic bottleneck in a butterfly population network". Proceedings of the National Academy of Sciences 113, nr 39 (12.09.2016): 10914–19. http://dx.doi.org/10.1073/pnas.1600865113.
Pełny tekst źródłaCaplins, Serena A., Kimberly J. Gilbert, Claudia Ciotir, Jens Roland, Stephen F. Matter i Nusha Keyghobadi. "Landscape structure and the genetic effects of a population collapse". Proceedings of the Royal Society B: Biological Sciences 281, nr 1796 (7.12.2014): 20141798. http://dx.doi.org/10.1098/rspb.2014.1798.
Pełny tekst źródłaPadrón, Mariana, i Katell Guizien. "Modelling the effect of demographic traits and connectivity on the genetic structuration of marine metapopulations of sedentary benthic invertebrates". ICES Journal of Marine Science 73, nr 7 (8.09.2015): 1935–45. http://dx.doi.org/10.1093/icesjms/fsv158.
Pełny tekst źródłaWeckworth, Byron V., Marco Musiani, Nicholas J. DeCesare, Allan D. McDevitt, Mark Hebblewhite i Stefano Mariani. "Preferred habitat and effective population size drive landscape genetic patterns in an endangered species". Proceedings of the Royal Society B: Biological Sciences 280, nr 1769 (22.10.2013): 20131756. http://dx.doi.org/10.1098/rspb.2013.1756.
Pełny tekst źródłaCampos, João Carlos, Asghar Mobaraki, Elham Abtin, Raquel Godinho i José Carlos Brito. "Preliminary assessment of genetic diversity and population connectivity of the Mugger Crocodile in Iran". Amphibia-Reptilia 39, nr 1 (2018): 126–31. http://dx.doi.org/10.1163/15685381-16000173.
Pełny tekst źródłaEschenroeder, Jackman C., i James H. Roberts. "Habitat loss, fragmentation, and the genetic status of Roanoke bass". Canadian Journal of Fisheries and Aquatic Sciences 77, nr 2 (luty 2020): 375–87. http://dx.doi.org/10.1139/cjfas-2019-0103.
Pełny tekst źródłaDouglas, Marlis R., Steven M. Mussmann, Tyler K. Chafin, Whitney J. B. Anthonysamy, Mark A. Davis, Matthew P. Mulligan, Robert L. Schooley, Wade Louis i Michael E. Douglas. "Population connectivity in voles (Microtus sp.) as a gauge for tall grass prairie restoration in midwestern North America". PLOS ONE 16, nr 12 (9.12.2021): e0260344. http://dx.doi.org/10.1371/journal.pone.0260344.
Pełny tekst źródłaStafford-Bell, R. E., W. F. D. van Dongen, R. W. Robinson i A. A. Chariton. "Connectivity of the seagrass Zostera muelleri within south-eastern Australia". Marine and Freshwater Research 70, nr 8 (2019): 1056. http://dx.doi.org/10.1071/mf18333.
Pełny tekst źródłaRozprawy doktorskie na temat "Population genetic connectivity"
Pugliese, Rosa Angela. "Mesophotic red coral population: genetic variability and connectivity". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/4587/.
Pełny tekst źródłaTurley, Brendan Douglas. "Oyster Reef Connectivity Inferred Via Population Genetic Analysis". W&M ScholarWorks, 2015. https://scholarworks.wm.edu/etd/1539617954.
Pełny tekst źródłaShulzitshi, Kathryn. "A genetic assessment of population connectivity in mutton snapper, Lutjanus analis /". Electronic version (PDF), 2005. http://dl.uncw.edu/etd/2005/shulzitskik/kathrynshulzitski.pdf.
Pełny tekst źródłaBenham, Celeste Elizabeth. "Genetic assessment of the population connectivity of the red urchin (Strongylocentrotus franciscanus)". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p1461104.
Pełny tekst źródłaTitle from first page of PDF file (viewed February 6, 2009). Available via ProQuest Digital Dissertations. Includes bibliographical references (p. 27-31).
Kool, Johnathan. "Connectivity and Genetic Structure in Coral Reef Ecosystems: Modeling and Analysis". Scholarly Repository, 2008. http://scholarlyrepository.miami.edu/oa_dissertations/157.
Pełny tekst źródłaMonteiro, Ana Rita Andril. "Genetic structure of mussel population in NE Atlantic and Mediterranean: connectivity between deep-sea habitats". Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/17460.
Pełny tekst źródłaSpecies persist over time, due to exchange of individuals between subpopulations. In the marine environment, most benthic organisms have complex life cycles including pelagic larvae that are transported by ocean currents promoting species dispersal. Larval dispersal connects geographically distant populations and determines population structure. The knowledge about this biologic process provides relevant information for conservation of marine populations. This study investigates the genetic structure and connectivity of deep-sea mussel populations between fragmented habitats in the NE Atlantic and Mediterranean. The mitochondrial Cytochrome Oxidase I (mtCOI) gene was used to analyze site-specific genetic diversity and the population structure of two mussel species, Idas modiolaeformis and “Idas” simpsoni. Populations of each species are not geographically isolated. The presence of one dominant haplotype for each species suggests shared ancestral polymorphisms between Mediterranean and NE Atlantic populations. The overall high genetic differentiation observed in I. modiolaeformis indicates that the metapopulation is structured. Distant populations, located in Atlantic and E Mediterranean, revealed low genetic distances, suggesting gene flow between the two regions. Genetic and geographical distances support an island model of I. modiolaeformis population structure. A major drawback of this study is concerned with the discrepant number of individuals among populations. Further research will be needed, using more specimens and other gene markers, to investigate connectivity patterns at different spatial scales.
As espécies persistem ao longo do tempo devido à troca de indivíduos entre subpopulações. No ambiente marinho, a maioria dos organismos bentónicos têm ciclos de vida complexos, envolvendo larvas pelágicas que são transportadas por correntes oceânicas contribuindo para dispersão das espécies. A dispersão larvar estabelece conectividade entre populações geograficamente separadas e afeta a estrutura da população. O conhecimento deste processo biológico promove informações importantes para a conservação de populações marinhas. Este estudo investiga a estrutura genética e conectividade de populações de mexilhão de profundidade entre habitats fragmentados no NE Atlântico e Mediterrânico. O gene mitocondrial, Citocromo Oxidase I (mtCOI), foi utilizado para analisar diversidade genética por local e a estrutura populacional de duas espécies de mexilhão, Idas modiolaeformis e "Idas" simpsoni. As populações de cada uma das espécies não se encontram geograficamente isoladas. A presença de um haplótipo dominante para cada espécie sugere a partilha de polimorfismos ancestrais entre populações do Mediterrâneo e do NE Atlântico. As populações de I. modiolaeformis demonstraram uma elevada diferenciação genética, indicando estruturação da metapopulação. Populações distantes umas das outras, localizadas no Atlântico e E Mediterrâneo, revelaram baixas distâncias genéticas, sugerindo fluxo genético entre as duas regiões. Distâncias genéticas e geográficas suportam o modelo de ilha como o modelo para a estrutura populacional de I. modiolaeformis. Uma grande desvantagem deste estudo está relacionada com o número discrepante de indivíduos entre populações. Para investigar os padrões de conectividade em diferentes escalas espaciais serão necessários mais estudos, utilizando mais espécimes e outros marcadores genéticos.
Fitzpatrick, Cristin Keelin. "Genetic Population and Evolutionary Dynamics of the Angel Sharks, Squatina spp". Thesis, NSUWorks, 2018. https://nsuworks.nova.edu/occ_stuetd/478.
Pełny tekst źródłaFigueira, Cláudia Alexandra Rodrigues Marques. "Comparison of different methods to detect genetic barriers in a small mammal population". Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/15871.
Pełny tekst źródłaHabitat fragmentation and the consequently the loss of connectivity between populations can reduce the individuals interchange and gene flow, increasing the chances of inbreeding, and the increase the risk of local extinction. Landscape genetics is providing more and better tools to identify genetic barriers.. To our knowledge, no comparison of methods in terms of consistency has been made with observed data and species with low dispersal ability. The aim of this study is to examine the consistency of the results of five methods to detect barriers to gene flow in a Mediterranean pine vole population Microtus duodecimcostatus: F-statistics estimations, Non-Bayesian clustering, Bayesian clustering, Boundary detection and Simple/Partial Mantel tests. All methods were consistent in detecting the stream as a non-genetic barrier. However, no consistency in results among the methods were found regarding the role of the highway as a genetic barrier. Fst, Bayesian clustering assignment test and Partial Mantel test identifyed the highway as a filter to individual interchange. The Mantel tests were the most sensitive method. Boundary detection method (Monmonier’s Algorithm) and Non-Bayesian approaches did not detect any genetic differentiation of the pine vole due to the highway. Based on our findings we recommend that the genetic barrier detection in low dispersal ability populations should be analyzed with multiple methods such as Mantel tests, Bayesian clustering approaches because they show more sensibility in those scenarios and with boundary detection methods by having the aim of detect drastic changes in a variable of interest between the closest individuals. Although simulation studies highlight the weaknesses and the strengths of each method and the factors that promote some results, tests with real data are needed to increase the effectiveness of genetic barrier detection.
A fragmentação do habitat e a consequente perda da conectividade entre populações pode reduzir o intercâmbio de indivíduos e consequentemente o fluxo genético, aumentando as hipóteses de ocorrer consanguinidade e consequentemente aumentar o risco de extinção local. A disciplina da genética da paisagem fornece cada vez mais e melhores ferramentas para detectar barreiras genéticas. No entanto, não se conhecem até à data, comparações de métodos em termos de consistência de resultados com dados observados e espécies com reduzida capacidade de dispersão. O objectivo deste estudo é avaliar a consistência dos resultados de cinco métodos de análise do papel da auto-estrada e de um rio como barreira ao fluxo genético numa população de rato-cego-mediterrânico Microtus duodecimcostatus: estimativas do Festatistico, método de aglomeração não-Bayesianos, métodos de aglomeração Bayesianos, método de detecção de fronteiras (algoritmo Monmonier) e o teste Mantel simples e parcial. Todos os métodos testados foram consistentes em considerar o rio como uma não barreira genética ao rato-cego-mediterrânico. No entanto, não houve consistência nos resultados quanto ao papel da autoestrada como barreira genética. As estimativas do F-estatistico, os métodos de aglomeração Bayesianos e o teste de Mantel parcial que mostram que a autoestrada pode estar a funcionar como um filtro ao movimento dos indivíduos entre os dois lados da estrutura. Os métodos de deteção de fronteiras (algoritmo Monmonier) e de aglomeração não-Bayesiano não detectaram diferenciação genética nas populações de rato-cego-mediterrâneo devido à estrada. Com base nos nossos resultados nós recomendamos a aplicação dos testes de Mantel, os métodos de aglomeração Bayesianos e dos métodos de detecção de fronteiras para esclarecer o papel dos atributos da paisagem como barreiras genéticas uma vez que, todos foram capazes de detectar barreiras mas não obtiveram resultados similares. Apesar dos estudos com base em simulações apontarem as vantagens e desvantagens de cada método e os fatores que associados aos resultados, é necessário que se façam testes com base em dados reais para que sejam mais eficazes na detecção de barreiras genéticas.
Larsson, Josefine. "Population genetic structure and connectivity of the abundant sea urchin, Diadema setosum around Unguja island (Zanzibar)". Thesis, Södertörns högskola, Institutionen för livsvetenskaper, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-2824.
Pełny tekst źródłaBernard, Andrea M. "Population Connectivity in the Ocean: A Genetic View of Upper Trophic Level Fishes Displaying Contrasting Life Histories". Thesis, NSUWorks, 2014. https://nsuworks.nova.edu/occ_stuetd/86.
Pełny tekst źródłaKsiążki na temat "Population genetic connectivity"
Marko, Peter B., i Michael W. Hart, red. Genetic Analysis of Larval Dispersal, Gene Flow, and Connectivity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786962.003.0012.
Pełny tekst źródłaFeusner, Jamie D., i Danyale McCurdy-McKinnon. Body Dysmorphic Disorder. Redaktor Christopher Pittenger. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228163.003.0050.
Pełny tekst źródłaYoung, Craig M., Shawn M. Arellano, Jean-François Hamel i Annie Mercier, red. Ecology and Evolution of Larval Dispersal in the Deep Sea. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786962.003.0016.
Pełny tekst źródłaJohansen, Bruce, i Adebowale Akande, red. Nationalism: Past as Prologue. Nova Science Publishers, Inc., 2021. http://dx.doi.org/10.52305/aief3847.
Pełny tekst źródłaCzęści książek na temat "Population genetic connectivity"
Balkenhol, Niko. "Evidenzbasiertes Rotwildmanagement in Deutschland: Eine Übersicht und Vorschläge für die Zukunft". W Evidenzbasiertes Wildtiermanagement, 5–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65745-4_2.
Pełny tekst źródłaAllendorf, Fred W., W. Chris Funk, Sally N. Aitken, Margaret Byrne i Gordon Luikart. "Population Connectivity". W Conservation and the Genomics of Populations, 425–50. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780198856566.003.0019.
Pełny tekst źródłaEwers-Saucedo, Christine, i John P. Wares. "Population Connectivity and Phylogeography of Crustaceans". W Evolution and Biogeography, 440–63. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190637842.003.0017.
Pełny tekst źródła"Advances in Understanding Landscape Influences on Freshwater Habitats and Biological Assemblages". W Advances in Understanding Landscape Influences on Freshwater Habitats and Biological Assemblages, redaktorzy Chanté D. Davis, Clinton W. Epps, Rebecca L. Flitcroft i Michael A. Banks. American Fisheries Society, 2019. http://dx.doi.org/10.47886/9781934874561.ch3.
Pełny tekst źródła"Cutthroat Trout: Evolutionary Biology and Taxonomy". W Cutthroat Trout: Evolutionary Biology and Taxonomy, redaktorzy Thomas H. Williams, Kitty E. Griswold, Ernest R. Ernest R., Kenneth P. Currens i Gordon H. Reeves. American Fisheries Society, 2018. http://dx.doi.org/10.47886/9781934874509.ch9.
Pełny tekst źródłaRubio-Méndez, Gabriel, Alberto Prado, Jacqueline C. Bede, José Arturo De-Nova, Joel Flores, Juan Antonio Reyes-Agüero i Laura Yáñez-Espinosa. "The Endangered Species Dioon edule in the Sierra Madre Oriental in San Luis Potosí: Demography and Genetic Diversity". W Natural History and Ecology of Mexico and Central America. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96372.
Pełny tekst źródła"Muskellunge Management: Fifty Years of Cooperation Among Anglers, Scientists, and Fisheries Biologists". W Muskellunge Management: Fifty Years of Cooperation Among Anglers, Scientists, and Fisheries Biologists, redaktorzy Loren M. Miller, Loren M. Miller, John M. Farrell, Kevin L. Kapuscinski, Kim Scribner, Brian L. Sloss, Keith N. Turnquist i Chris C. Wilson. American Fisheries Society, 2017. http://dx.doi.org/10.47886/9781934874462.ch35.
Pełny tekst źródłaAllendorf, Fred W., W. Chris Funk, Sally N. Aitken, Margaret Byrne i Gordon Luikart. "Inbreeding Depression". W Conservation and the Genomics of Populations, 371–96. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780198856566.003.0017.
Pełny tekst źródła"Pacific Salmon: Ecology and Management of Western Alaska’s Populations". W Pacific Salmon: Ecology and Management of Western Alaska’s Populations, redaktorzy Megan V. McPhee, Mara S. Zimmerman, Terry D. Beacham, Brian R. Beckman, Jeffrey B. Olsen, Lisa W. Seeb i William D. Templin. American Fisheries Society, 2009. http://dx.doi.org/10.47886/9781934874110.ch58.
Pełny tekst źródłaGirimaji, Satish C., Salah Basheer, Asit Biswas i Satheesh Kumar Gangadharan. "Intellectual Disability—Concepts, Aetiology, and Genetics". W Oxford Textbook of the Psychiatry of Intellectual Disability, 23–34. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198794585.003.0003.
Pełny tekst źródłaStreszczenia konferencji na temat "Population genetic connectivity"
Smith, Gregory C., i Shiang-Fong Chen. "Automated Initial-Population Generation for Genetic-Algorithm-Based Assembly Planning". W ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/detc2000/flex-14464.
Pełny tekst źródłaSebaaly, Milad Fares, i Hideo Fujimoto. "Automatic Assembly Sequence Planning With Fuzzy Graph Representation and Genetic Search". W ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/cie-1322.
Pełny tekst źródłaAiman, Tabony, i Llabres-Valls Enriqueta. "The Agrarian City in the age of Planetary Scale Computation: Dynamic System Model and Parametric Design Model for the introduction of Vertical Farming in High Dense Urban Environments in Singapore". W International Conference on the 4th Game Set and Match (GSM4Q-2019). Qatar University Press, 2019. http://dx.doi.org/10.29117/gsm4q.2019.0018.
Pełny tekst źródłaLira, S. M. A., R. Schwamborn, C. Falcão, T. Silva i R. A. Torres. "GENETIC DIVERSITY AND CONNECTIVITY OF ISOLATED POPULATIONS OF THE LAND CRAB JOHNGARTHIA LAGOSTOMA (BRACHYURA: GECARCINIDAE): IMPLICATIONS FOR ITS CONSERVATION IN THE TROPICAL ATLANTIC". W X Congresso Brasileiro sobre Crustáceos. Sociedade Brasileira de Carcinologia, 2018. http://dx.doi.org/10.21826/2178-7581x2018234.
Pełny tekst źródła