Gotowa bibliografia na temat „Polypropylene”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Polypropylene”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Polypropylene"
Lukanina, Yulia, Anatoliy Khvatov, Natalya Kolesnikova i Anatoliy Popov. "The Effect of Cooling Rate during Crystallization on the Melting Behavior of Polypropylenes of Different Chemical Structure". Chemistry & Chemical Technology 10, nr 4 (15.09.2016): 479–83. http://dx.doi.org/10.23939/chcht10.04.479.
Pełny tekst źródłaLee, Chao-Yu, i Chia-Wei Chang. "Dielectric Constant Enhancement with Low Dielectric Loss Growth in Graphene Oxide/Mica/Polypropylene Composites". Journal of Composites Science 5, nr 2 (8.02.2021): 52. http://dx.doi.org/10.3390/jcs5020052.
Pełny tekst źródłaMezey, Zoltán, i Tibor Czigány. "Mechanical Investigation of Hemp Fiber Reinforced Polypropylene with Different Types of MAPP Compatibilizer". Materials Science Forum 537-538 (luty 2007): 223–30. http://dx.doi.org/10.4028/www.scientific.net/msf.537-538.223.
Pełny tekst źródłaRistolainen, Noora, Ulla Vainio, Santeri Paavola, Mika Torkkeli, Ritva Serimaa i Jukka Seppälä. "Polypropylene/organoclay nanocomposites compatibilized with hydroxyl-functional polypropylenes". Journal of Polymer Science Part B: Polymer Physics 43, nr 14 (2005): 1892–903. http://dx.doi.org/10.1002/polb.20485.
Pełny tekst źródłaPrvulović, Slavica, Predrag Mošorinski, Ljubiša Josimović, Jasna Tolmač, Luka Djordjević, Mića Djurdjev, Mihalj Bakator, Branislava Radišić i Dejan Bajić. "Influence of Cutting Regime Parameters on Determining the Main Cutting Resistance during Polypropylene Machining". Polymers 16, nr 11 (29.05.2024): 1537. http://dx.doi.org/10.3390/polym16111537.
Pełny tekst źródłaBahreini, Ebrahim, Seyed Foad Aghamiri, Manfred Wilhelm i Mahdi Abbasi. "Influence of molecular structure on the foamability of polypropylene: Linear and extensional rheological fingerprint". Journal of Cellular Plastics 54, nr 3 (23.03.2017): 515–43. http://dx.doi.org/10.1177/0021955x17700097.
Pełny tekst źródłaChen, Jianjun, Yueyue Jia, Zhiye Zhang, Xinlong Wang i Lin Yang. "Effects of Chlorinated Polypropylene on the Conformation of Polypropylene in Polypropylene/Chlorinated Polypropylene/Polyaniline Composites". Journal of Spectroscopy 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/317813.
Pełny tekst źródłaGao, Lujie, Hegang Ren, Yanhui Hou, Linlin Ye, Hao Meng, Binyuan Liu i Min Yang. "Synthesis of High-Molecular-Weight Polypropylene Elastomer by Propylene Polymerization Using α-Diimine Nickel Catalysts". Polymers 16, nr 16 (22.08.2024): 2376. http://dx.doi.org/10.3390/polym16162376.
Pełny tekst źródłaMelinda, Annisa Prita, Eka Juliafad i Fajri Yusmar. "Pemanfaatan Serat Polypropylene untuk Meningkatkan Kuat Tekan Mortar dan Kuat Tekan Pasangan Bata". CIVED 7, nr 3 (26.11.2020): 176. http://dx.doi.org/10.24036/cived.v7i3.111906.
Pełny tekst źródłaYAMADA, Masaya. "Polypropylene". NIPPON GOMU KYOKAISHI 80, nr 8 (2007): 288–91. http://dx.doi.org/10.2324/gomu.80.288.
Pełny tekst źródłaRozprawy doktorskie na temat "Polypropylene"
Tang, Eunice Wai Chong. "Preparation and characterization of polypropylene-polypropylene (PP-PP) composites /". View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?MECH%202003%20TANG.
Pełny tekst źródłaIncludes bibliographical references (leaves 91-95). Also available in electronic version. Access restricted to campus users.
Slánská, Petra. "Aplikace termochromních látek v polymerních materiálech". Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2008. http://www.nusl.cz/ntk/nusl-216383.
Pełny tekst źródłaWang, Shi-Wei. "Controlling the structure and properties of toughened and reinforced isotactic polypropylene". Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0231/document.
Pełny tekst źródłaAs a commodity polymer, the applications of isotactic polypropylene (PP) are limited by its low impact strength. Based on the structure-property relationship, its impact strength could be improved by controlling its structure. In this study, different kinds of nucleating agents were used to promote the formation of beta crystals of PP as well as mixtures of two PPs of different molar masses. The mechanical properties, fracture behaviour, and crystalline morphology were investigated. The effects of the type and content of the peroxide and nucleating agent on the crystalline structure and mechanical properties of the PP were also explored. A multi-walled carbon nanotude (MWCNT) supported nucleating agent was introduced to modify the crystalline structure of PP and the impact strength of the resulting PP was 7 times that of the pure PP and more than 3 times that of beta nucleated PP. The large increase in the impact strength was attributed to the formation of beta transcrystalline morphology which was promoted by the MWCT supported nucleating agent
Wang, Xiaowei. "Adhesive bonding of polypropylene". Thesis, University of Bristol, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247559.
Pełny tekst źródłaIşık, Kıvanç Tanoğlu Metin. "Layered silicate/polypropylene nanocomposites/". [s.l.]: [s.n.], 2006. http://library.iyte.edu.tr/tezler/master/makinamuh/T000532.pdf.
Pełny tekst źródłaCancelas, Sanz Aarón José. "High impact polypropylene : structure evolution and impact on reaction". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1210/document.
Pełny tekst źródłaIsotactic Polypropylene (iPP) homopolymers have higher stiffness than polyethylene (PE), but also limited toughness, especially at lower temperatures. This can be overcome by incorporating an elastomeric copolymer of ethylene and propylene directly in the semi crystalline iPP matrix. Such in situ reactor blends are well-known, and their production requires of multi-step reaction process. Very briefly, an industrial process for high impact polypropylene (hiPP) products involves 2 reaction zones (each zone can be composed of one or more reactors). iPP is made in the first zone, the still active powders are then degassed and sent to a second zone in which an elastomer (usually a copolymer of propylene and ethylene referred to as Ethylene-Propylene Rubber (EPR)) is made. The iPP homopolymer can be produced in the gas phase or slurry phase, whereas the EPR must be made in a gas phase reactor. In the current thesis, our focus was on an “all gas phase”process.Therefore, the morphology of hiPP will be greatly dependent on that of the intermediate iPP, which in turn, will depend on the precatalyst morphology. However, the same precatalyst can lead to different iPP morphologies, depending on the injection protocol followed. Therefore, catalyst injection is a critical aspect while producing hiPP. Such aspect has been studied by performance of a designed set of propylene polymerization reaction experiments. Commercially available supported Ziegler-Natta (ZN) catalysts along with a lab-scale stirred-bed reactor and a gas phase stopped flow reactor have been used. It is understood why prepolymerization and wetting the catalyst with hydrocarbon before being charged to the reactor ensure high activity and quality morphology while producing iPP. During the production of hiPP, sorption thermodynamics of the gas phase have a big impact on propylene homopolymerization and copolymerization kinetics. For instance, higher hydrocarbons enhance the propylene solubility in polymer (which is known as “cosolubility” phenomenon) which leads to an activity increase. In addition, the solubility and diffusivity of the different monomers used to produce hiPP (propylene, ethylene and ethylene/propylene mixtures) in the powders depend on the temperatures and pressures which the process is conducted at. Experimental data of these quantities was obtained and semi-empirical models generally used in the polyolefin industry were used to understand their dependence on the process conditions. Finally, several hiPP powders were made in the lab-scale stirred-bed reactor with a supported ZN catalyst, following the “all gas phase” route. The morphology of the iPP matrix and conditions during copolymerization such as amount of copolymer, temperature, pressure, relative amount of ethylene to propylene and the presence of hydrogen have been systematically varied to comprehend their impact on the rubber distribution among the PP matrix. The aforementioned factor is, in turn, crucial for (1) a correct industrial process operation, and (2) the mechanical properties sought-after in hiPP
Yilmaz, Sule Seda. "Preparation And Characterization Of Organoclay-polypropylene Nanocomposites With Maleic Anhydride Grafted Polypropylene Compatibilizer". Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613291/index.pdf.
Pełny tekst źródłaMoplen&rdquo
EP300L which is a heterophase copolymer. Polymer blends and nanocomposites were prepared by melt compounding method in a twin screw extruder. Nanofil®
5 (N5) and Nanofil®
8(N8) were used as the organoclays, and maleic anhydride grafted polypropylene (M) was used as the compatibilizer. The effects of additive concentrations and types of organoclays on the morphology, mechanical and thermal properties were investigated. Organoclay loading over 2 wt% prevented the intercalation mechanism resulting in large aggregates of clay, thus the material properties became poor even in the presence of compatibilizer. Compatibilizer addition improved the intercalation ability of the polymer, however a substantial increase in mechanical properties was not obtained up to 6 wt % loading of the compatibilizer. XRD analysis revealed that intercalated structures were formed with the addition of compatibilizer and organoclay. The nanocomposites that were prepared with N5 type organoclay showed delaminated structures at 6 wt % compatibilizer loading. v Nanofill ®
5 exhibited the highest improvements in mechanical properties, since the degree of organoclay dispersion was better in Nanofill ®
5 containing nanocomposites in comparison to Nanofill ®
8 containing ones. The DSC analysis indicated a insignificant reduction in the melting temperature of the ternary nanocomposites.
Lepoutre, Priscilla. "The microstructure of polypropylene blends with ethylene vinyl alcohol copolymer and maleated polypropylene /". Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61816.
Pełny tekst źródłaNjoroge, Daniel [Verfasser]. "Thesis: Preparation and characterization of modified-graphene oxide/polypropylene nanocomposites : polypropylene nanocomposites / Daniel Njoroge". Berlin : epubli, 2016. http://www.epubli.de/.
Pełny tekst źródłaKöller, Frank. "Modifizierte Polypropylene durch Metallocen-Katalyse". [S.l. : s.n.], 1998. http://deposit.ddb.de/cgi-bin/dokserv?idn=961143738.
Pełny tekst źródłaKsiążki na temat "Polypropylene"
Karger-Kocsis, J., red. Polypropylene. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4421-6.
Pełny tekst źródłaHayes, Teresa L., Rebecca L. Friedman i Richard J. Jorkasky. Polypropylene. Cleveland: Freedonia Group, 2000.
Znajdź pełny tekst źródłaServices, Chemical Intelligence, red. Polypropylene. Dunstable: Chemical Intelligence Services, 1993.
Znajdź pełny tekst źródłaWeizer, William P. Polypropylene. Cleveland, Ohio: Freedonia Group, 1998.
Znajdź pełny tekst źródła1940-, Karian Harutun G., red. Handbook of polypropylene and polypropylene composites. New York: Marcel Dekker, 2003.
Znajdź pełny tekst źródła1940-, Karian Harutun G., red. Handbook of polypropylene and polypropylene composites. New York: Marcel Dekker, 1999.
Znajdź pełny tekst źródłaNayak, Rajkishore. Polypropylene Nanofibers. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61458-8.
Pełny tekst źródłaKarger-Kocsis, József, i Tamás Bárány, red. Polypropylene Handbook. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12903-3.
Pełny tekst źródłaNello, Pasquini, i Addeo Antonio, red. Polypropylene handbook. Wyd. 2. Cincinnati: Hanser Publishers, 2005.
Znajdź pełny tekst źródłaIta, Paul A. World polypropylene. Cleveland: Freedonia Group, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "Polypropylene"
Utracki, L. A. "Polypropylene". W Commercial Polymer Blends, 254–82. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5789-0_15.
Pełny tekst źródłaBährle-Rapp, Marina. "Polypropylene". W Springer Lexikon Kosmetik und Körperpflege, 440. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_8206.
Pełny tekst źródłaTakashima, Yoshinori. "Polypropylene". W Encyclopedia of Polymeric Nanomaterials, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_254-1.
Pełny tekst źródłaWhelan, Tony, i John Goff. "Polypropylene". W Injection Molding of Thermoplastic Materials - 2, 97–111. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-5502-2_7.
Pełny tekst źródłaGooch, Jan W. "Polypropylene". W Encyclopedic Dictionary of Polymers, 570. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9201.
Pełny tekst źródłaGooch, Jan W. "Polypropylene". W Encyclopedic Dictionary of Polymers, 570. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9202.
Pełny tekst źródłaBaker, Ian. "Polypropylene". W Fifty Materials That Make the World, 169–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78766-4_32.
Pełny tekst źródłaTakashima, Yoshinori. "Polypropylene". W Encyclopedia of Polymeric Nanomaterials, 2043–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_254.
Pełny tekst źródłaPeacock, Andrew J., i Allison Calhoun. "Polypropylene". W Polymer Chemistry, 285–97. München: Carl Hanser Verlag GmbH & Co. KG, 2006. http://dx.doi.org/10.3139/9783446433434.019.
Pełny tekst źródłaMishra, Munmaya, i Biao Duan. "Polypropylene". W The Essential Handbook of Polymer Terms and Attributes, 182–83. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003161318-177.
Pełny tekst źródłaStreszczenia konferencji na temat "Polypropylene"
Sarakatsianos, V., I. Chapalo, E. Grantzioti, T. Manouras, M. Vamvakaki, M. Konstantaki i S. Pissadakis. "Bragg grating reflectors inscribed in polypropylene lightpipes". W Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, BW3A.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/bgpp.2024.bw3a.4.
Pełny tekst źródłaSandholzer, M., K. Bernreitner i K. Klimke. "Polypropylene and polypropylene-elastomer blends for medical packaging". W PROCEEDINGS OF THE REGIONAL CONFERENCE GRAZ 2015 – POLYMER PROCESSING SOCIETY PPS: Conference Papers. Author(s), 2016. http://dx.doi.org/10.1063/1.4965575.
Pełny tekst źródłaAbdouss, Majid, i Naser Sharifi Sanjani. "Oxidation of Polypropylene and Effects of Compatibilization of Oxidized Polypropylene". W Processing and Fabrication of Advanced Materials VIII. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811431_0111.
Pełny tekst źródłaDafalla, Muawia, i Ali Obaid. "The Role of Polypropylene Fibers and Polypropylene Geotextile in Erosion Control". W Second International Conference on Geotechnical and Earthquake Engineering. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784413128.077.
Pełny tekst źródłaMandolfino, Chiara, Enrico Lertora i Carla Gambaro. "Neutral polypropylene laser welding". W ESAFORM 2016: Proceedings of the 19th International ESAFORM Conference on Material Forming. Author(s), 2016. http://dx.doi.org/10.1063/1.4963496.
Pełny tekst źródłaSikora, Janusz W., i Agnieszka Krząkała. "MICROEXTRUSION OF FILLED POLYPROPYLENE". W 15th International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control. Athens: Institute of Structural Analysis and Antiseismic Research National Technical University of Athens, 2023. http://dx.doi.org/10.7712/140123.10202.18825.
Pełny tekst źródłaHrabova, Kristyna, Jaromir Lanik, Magda Cibulkova i Petr Lehner. "THE INFLUENCE OF POLYPROPYLEN FIBRES OF CONCRETE PROPERTIES". W 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023v/6.2/s26.73.
Pełny tekst źródłaQiu, Xunlin, Werner Wirges, Reimund Gerhard i Heitor Cury Basso. "Are cellular polypropylene ferroelectrets ferroic?" W 2013 IEEE International Conference on Solid Dielectrics (ICSD). IEEE, 2013. http://dx.doi.org/10.1109/icsd.2013.6619905.
Pełny tekst źródłaSadik, Zineb, Fatima ezzahra Arrakhiz i Hafida Idrissi-Saba. "Polypropylene material under simulated recycling". W the Fourth International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3234698.3234736.
Pełny tekst źródłaJones, Kyle. "Waterborne One-Component Polypropylene Coating". W International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/960917.
Pełny tekst źródłaRaporty organizacyjne na temat "Polypropylene"
Pople, John A. Morphology of Thermoplastic Elastomers:Stereoblock Polypropylene. Office of Scientific and Technical Information (OSTI), sierpień 2002. http://dx.doi.org/10.2172/799985.
Pełny tekst źródłaPayer. L51962 Coating Failure Consequences to CP Shielding. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), wrzesień 2002. http://dx.doi.org/10.55274/r0011268.
Pełny tekst źródłaWallner, Gernot M., i Markus Povacz. IEA-SHC Task 39 INFO Sheet C1 - Polypropylene absorber materials. IEA Solar Heating and Cooling Programme, maj 2015. http://dx.doi.org/10.18777/ieashc-task39-2015-0026.
Pełny tekst źródłaSweetser, Daniel M., i Nicole E. Zander. Parameter Study of Melt Spun Polypropylene Fibers by Centrifugal Spinning. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2014. http://dx.doi.org/10.21236/ada607592.
Pełny tekst źródłaPople, John A. Rheo-Optics and X-Ray Scattering Study of Elastomeric Polypropylene. Office of Scientific and Technical Information (OSTI), październik 2001. http://dx.doi.org/10.2172/798896.
Pełny tekst źródłaDatta, A., J. P. De Souza, A. P. Sukhadia i D. G. Baird. Processing Studies of Blends of Polypropylene with Liquid Crystalline Polymers. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1991. http://dx.doi.org/10.21236/ada232961.
Pełny tekst źródłaPople, John A. Tensile Properties and Small-Angle Neutron Scattering Investigation of Stereoblock Elastomeric Polypropylene. Office of Scientific and Technical Information (OSTI), sierpień 2002. http://dx.doi.org/10.2172/799990.
Pełny tekst źródłaCoe, Joshua. New Sesame Equations of State for Polypropylene, Polyvinylchloride (PVC), and Nylon 66. Office of Scientific and Technical Information (OSTI), październik 2023. http://dx.doi.org/10.2172/2007341.
Pełny tekst źródłaChase, George G., i Sesh K. Kodavanti. Thickening of Clay Slurries by Periodic Pressure Flow Through a Porous Polypropylene Tube. Fort Belvoir, VA: Defense Technical Information Center, październik 1993. http://dx.doi.org/10.21236/ada462709.
Pełny tekst źródłaHurlbutt, Katey. Literature Review of Recycling Polypropylene and Polyamide 12 Powders for Selective Laser Sintering. Office of Scientific and Technical Information (OSTI), czerwiec 2024. http://dx.doi.org/10.2172/2372667.
Pełny tekst źródła