Gotowa bibliografia na temat „Polynomial Identity Testing (PIT)”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Polynomial Identity Testing (PIT)”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Polynomial Identity Testing (PIT)"

1

Agrawal, Manindra, Sumanta Ghosh, and Nitin Saxena. "Bootstrapping variables in algebraic circuits." Proceedings of the National Academy of Sciences 116, no. 17 (2019): 8107–18. http://dx.doi.org/10.1073/pnas.1901272116.

Pełny tekst źródła
Streszczenie:
We show that for the blackbox polynomial identity testing (PIT) problem it suffices to study circuits that depend only on the first extremely few variables. One needs only to consider size-s degree-s circuits that depend on the firstlog○c svariables (where c is a constant and composes a logarithm with itself c times). Thus, the hitting-set generator (hsg) manifests a bootstrapping behavior—a partial hsg against very few variables can be efficiently grown to a complete hsg. A Boolean analog, or a pseudorandom generator property of this type, is unheard of. Our idea is to use the partial hsg and
Style APA, Harvard, Vancouver, ISO itp.
2

Huang, Jinyu. "Parallel algorithms for matroid intersection and matroid parity." Discrete Mathematics, Algorithms and Applications 07, no. 02 (2015): 1550019. http://dx.doi.org/10.1142/s1793830915500196.

Pełny tekst źródła
Streszczenie:
A maximum linear matroid parity set is called a basic matroid parity set, if its size is the rank of the matroid. We show that determining the existence of a common base (basic matroid parity set) for linear matroid intersection (linear matroid parity) is in NC2, provided that there are polynomial number of common bases (basic matroid parity sets). For graphic matroids, we show that finding a common base for matroid intersection is in NC2, if the number of common bases is polynomial bounded. To our knowledge, these algorithms are the first deterministic NC algorithms for matroid intersection a
Style APA, Harvard, Vancouver, ISO itp.
3

Shpilka, Amir, and Ilya Volkovich. "Read-once polynomial identity testing." computational complexity 24, no. 3 (2015): 477–532. http://dx.doi.org/10.1007/s00037-015-0105-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kopparty, Swastik, Shubhangi Saraf, and Amir Shpilka. "Equivalence of Polynomial Identity Testing and Polynomial Factorization." computational complexity 24, no. 2 (2015): 295–331. http://dx.doi.org/10.1007/s00037-015-0102-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kayal, Neeraj, and Nitin Saxena. "Polynomial Identity Testing for Depth 3 Circuits." computational complexity 16, no. 2 (2007): 115–38. http://dx.doi.org/10.1007/s00037-007-0226-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Arvind, V., and Partha Mukhopadhyay. "The ideal membership problem and polynomial identity testing." Information and Computation 208, no. 4 (2010): 351–63. http://dx.doi.org/10.1016/j.ic.2009.06.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Grochow, Joshua A., and Toniann Pitassi. "Circuit Complexity, Proof Complexity, and Polynomial Identity Testing." Journal of the ACM 65, no. 6 (2018): 1–59. http://dx.doi.org/10.1145/3230742.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Raz, Ran, and Amir Shpilka. "Deterministic polynomial identity testing in non-commutative models." computational complexity 14, no. 1 (2005): 1–19. http://dx.doi.org/10.1007/s00037-005-0188-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Arvind, V., Partha Mukhopadhyay, and Srikanth Srinivasan. "New Results on Noncommutative and Commutative Polynomial Identity Testing." computational complexity 19, no. 4 (2010): 521–58. http://dx.doi.org/10.1007/s00037-010-0299-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ghosal, Purnata, and B. V. Raghavendra Rao. "A note on parameterized polynomial identity testing using hitting set generators." Information Processing Letters 151 (November 2019): 105839. http://dx.doi.org/10.1016/j.ipl.2019.105839.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Polynomial Identity Testing (PIT)"

1

Forbes, Michael Andrew. "Polynomial identity testing of read-once oblivious algebraic branching programs." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/89843.

Pełny tekst źródła
Streszczenie:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.<br>This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.<br>Cataloged from student-submitted PDF version of thesis.<br>Includes bibliographical references (pages 209-220).<br>We study the problem of obtaining efficient, deterministic, black-box polynomial identity testing algorithms (PIT) for algebraic branching programs (ABPs) that are read-once and oblivious. This class has an effic
Style APA, Harvard, Vancouver, ISO itp.
2

Jindal, Gorav [Verfasser], and Markus [Akademischer Betreuer] Bläser. "On approximate polynomial identity testing and real root finding / Gorav Jindal ; Betreuer: Markus Bläser." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2019. http://d-nb.info/1200408160/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Jindal, Gorav Verfasser], and Markus [Akademischer Betreuer] [Bläser. "On approximate polynomial identity testing and real root finding / Gorav Jindal ; Betreuer: Markus Bläser." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2019. http://nbn-resolving.de/urn:nbn:de:bsz:291--ds-298805.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lagarde, Guillaume. "Contributions to arithmetic complexity and compression." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC192/document.

Pełny tekst źródła
Streszczenie:
Cette thèse explore deux territoires distincts de l’informatique fondamentale : la complexité et la compression. Plus précisément, dans une première partie, nous étudions la puissance des circuits arithmétiques non commutatifs, qui calculent des polynômes non commutatifs en plusieurs indéterminées. Pour cela, nous introduisons plusieurs modèles de calcul, restreints dans leur manière de calculer les monômes. Ces modèles en généralisent d’autres, plus anciens et largement étudiés, comme les programmes à branchements. Les résultats sont de trois sortes. Premièrement, nous donnons des bornes infé
Style APA, Harvard, Vancouver, ISO itp.
5

Grenet, Bruno. "Représentations des polynômes, algorithmes et bornes inférieures." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2012. http://tel.archives-ouvertes.fr/tel-00770148.

Pełny tekst źródła
Streszczenie:
La complexité algorithmique est l'étude des ressources nécessaires -- le temps, la mémoire, ... -- pour résoudre un problème de manière algorithmique. Dans ce cadre, la théorie de la complexité algébrique est l'étude de la complexité algorithmique de problèmes de nature algébrique, concernant des polynômes.Dans cette thèse, nous étudions différents aspects de la complexité algébrique. D'une part, nous nous intéressons à l'expressivité des déterminants de matrices comme représentations des polynômes dans le modèle de complexité de Valiant. Nous montrons que les matrices symétriques ont la même
Style APA, Harvard, Vancouver, ISO itp.
6

Nair, Vineet. "Expanders in Arithmetic Circuit Lower Bound : Towards a Separation Between ROABPs and Multilinear Depth 3 Circuits." Thesis, 2015. https://etd.iisc.ac.in/handle/2005/4811.

Pełny tekst źródła
Streszczenie:
Consider the problem of Polynomial Identity Testing(PIT): we are given an arithmetic circuit computing a multivariate polynomial over some eld and we have to determine whether that polynomial is identically zero or not. PIT is a fundamental problem and has applications in both algorithms and complexity theory. In this work, our aim is to study PIT for the model of multilinear depth three circuits for which no deterministic polynomial time identity test is known. An nO(log n) time blackbox PIT for set-multilinear depth three circuits (a special kind of multilinear depth three circuits) i
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Polynomial Identity Testing (PIT)"

1

Saxena, Nitin. "Progress on Polynomial Identity Testing-II." In Perspectives in Computational Complexity. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05446-9_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Shpilka, Amir. "Recent Results on Polynomial Identity Testing." In Computer Science – Theory and Applications. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20712-9_31.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Shpilka, Amir, and Ilya Volkovich. "Improved Polynomial Identity Testing for Read-Once Formulas." In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03685-9_52.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Forbes, Michael A., and Amir Shpilka. "Explicit Noether Normalization for Simultaneous Conjugation via Polynomial Identity Testing." In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40328-6_37.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Shpilka, Amir, and Ilya Volkovich. "On the Relation between Polynomial Identity Testing and Finding Variable Disjoint Factors." In Automata, Languages and Programming. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14165-2_35.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ivanyos, Gabor, and Youming Qiao. "Algorithms based on *-algebras, and their applications to isomorphism of polynomials with one secret, group isomorphism, and polynomial identity testing." In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 2018. http://dx.doi.org/10.1137/1.9781611975031.152.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Polynomial Identity Testing (PIT)"

1

Shpilka, Amir, and Ilya Volkovich. "Read-once polynomial identity testing." In the 40th annual ACM symposium. ACM Press, 2008. http://dx.doi.org/10.1145/1374376.1374448.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kopparty, Swastik, Shubhangi Saraf, and Amir Shpilka. "Equivalence of Polynomial Identity Testing and Deterministic Multivariate Polynomial Factorization." In 2014 IEEE Conference on Computational Complexity (CCC). IEEE, 2014. http://dx.doi.org/10.1109/ccc.2014.25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Andrews, Robert. "On Matrix Multiplication and Polynomial Identity Testing." In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2022. http://dx.doi.org/10.1109/focs54457.2022.00041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Arvind, V., Pushkar S. Joglekar, Partha Mukhopadhyay, and S. Raja. "Randomized polynomial time identity testing for noncommutative circuits." In STOC '17: Symposium on Theory of Computing. ACM, 2017. http://dx.doi.org/10.1145/3055399.3055442.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kayal, Neeraj, and Shubhangi Saraf. "Blackbox Polynomial Identity Testing for Depth 3 Circuits." In 2009 IEEE 50th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2009. http://dx.doi.org/10.1109/focs.2009.67.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Grochow, Joshua A., and Toniann Pitassi. "Circuit Complexity, Proof Complexity, and Polynomial Identity Testing." In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2014. http://dx.doi.org/10.1109/focs.2014.20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Arvind, V., Partha Mukhopadhyay, and Srikanth Srinivasan. "New Results on Noncommutative and Commutative Polynomial Identity Testing." In 2008 23rd Annual IEEE Conference on Computational Complexity. IEEE, 2008. http://dx.doi.org/10.1109/ccc.2008.22.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Anderson, Matthew, Dieter van Melkebeek, and Ilya Volkovich. "Derandomizing Polynomial Identity Testing for Multilinear Constant-Read Formulae." In 2011 IEEE Annual Conference on Computational Complexity (CCC). IEEE, 2011. http://dx.doi.org/10.1109/ccc.2011.18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Garg, Ankit, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. "A Deterministic Polynomial Time Algorithm for Non-commutative Rational Identity Testing." In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2016. http://dx.doi.org/10.1109/focs.2016.95.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sullivan, Paul, and Chris Evans. "“Improving the Robustness of Curve Fitting in Figure and Finish Metrology”." In Optical Fabrication and Testing. Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oft.1992.wa11.

Pełny tekst źródła
Streszczenie:
Curve fitting has many applications in topographic characterization including areas such as datum definition, modelling, and filtering e.g. the use of Zernike polynomials in figure metrology and the removal of tilt and curvature in finish measurement. However, topography measurement data does not represent a purely theoretical manufacturing process and contains events which are part of the "true" surface such as scratches and digs (also referred to as pits and troughs or cosmetics), and include erroneous data which are not part of the "true" surface resulting from measurement errors (e.g. sign
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!