Artykuły w czasopismach na temat „Polymorphism - Network Forming Liquids”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Polymorphism - Network Forming Liquids”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Hernandes, V. F., M. S. Marques i José Rafael Bordin. "Phase classification using neural networks: application to supercooled, polymorphic core-softened mixtures". Journal of Physics: Condensed Matter 34, nr 2 (28.10.2021): 024002. http://dx.doi.org/10.1088/1361-648x/ac2f0f.
Pełny tekst źródłaJin, Yi, Aixi Zhang, Sarah E. Wolf, Shivajee Govind, Alex R. Moore, Mikhail Zhernenkov, Guillaume Freychet, Ahmad Arabi Shamsabadi i Zahra Fakhraai. "Glasses denser than the supercooled liquid". Proceedings of the National Academy of Sciences 118, nr 31 (30.07.2021): e2100738118. http://dx.doi.org/10.1073/pnas.2100738118.
Pełny tekst źródłaBalyakin, I. A., R. E. Ryltsev i N. M. Chtchelkatchev. "Liquid–Crystal Structure Inheritance in Machine Learning Potentials for Network-Forming Systems". JETP Letters 117, nr 5 (marzec 2023): 370–76. http://dx.doi.org/10.1134/s0021364023600234.
Pełny tekst źródłaTakéuchi, Yasushi. "Hydrodynamic Scaling and the Intermediate-Range Order in Network-Forming Liquids". Progress of Theoretical Physics Supplement 178 (2009): 181–86. http://dx.doi.org/10.1143/ptps.178.181.
Pełny tekst źródłaHong, N. V., N. V. Huy i P. K. Hung. "The structure and dynamic in network forming liquids: molecular dynamic simulation". International Journal of Computational Materials Science and Surface Engineering 5, nr 1 (2012): 55. http://dx.doi.org/10.1504/ijcmsse.2012.049058.
Pełny tekst źródłaYang, Ke, Zhikun Cai, Madhusudan Tyagi, Mikhail Feygenson, Joerg C. Neuefeind, Jeffrey S. Moore i Yang Zhang. "Odd–Even Structural Sensitivity on Dynamics in Network-Forming Ionic Liquids". Chemistry of Materials 28, nr 9 (25.04.2016): 3227–33. http://dx.doi.org/10.1021/acs.chemmater.6b01429.
Pełny tekst źródłaLiu, Mengtan, Ryan D. McGillicuddy, Hung Vuong, Songsheng Tao, Adam H. Slavney, Miguel I. Gonzalez, Simon J. L. Billinge i Jarad A. Mason. "Network-Forming Liquids from Metal–Bis(acetamide) Frameworks with Low Melting Temperatures". Journal of the American Chemical Society 143, nr 7 (11.02.2021): 2801–11. http://dx.doi.org/10.1021/jacs.0c11718.
Pełny tekst źródłaZhu, W., Y. Xia, B. G. Aitken i S. Sen. "Temperature dependent onset of shear thinning in supercooled glass-forming network liquids". Journal of Chemical Physics 154, nr 9 (7.03.2021): 094507. http://dx.doi.org/10.1063/5.0039798.
Pełny tekst źródłaHong, N. V., N. V. Huy i P. K. Hung. "The correlation between coordination and bond angle distribution in network-forming liquids". Materials Science-Poland 30, nr 2 (czerwiec 2012): 121–30. http://dx.doi.org/10.2478/s13536-012-0019-y.
Pełny tekst źródłaMaruyama, Kenji, Hirohisa Endo i Hideoki Hoshino. "Voids and Intermediate-Range Order in Network-Forming Liquids: Rb20Se80 and BiBr3". Journal of the Physical Society of Japan 76, nr 7 (15.07.2007): 074601. http://dx.doi.org/10.1143/jpsj.76.074601.
Pełny tekst źródłaHung, P. K., P. H. Kien, L. T. San i N. V. Hong. "The study of diffusion in network-forming liquids under pressure and temperature". Physica B: Condensed Matter 501 (listopad 2016): 18–25. http://dx.doi.org/10.1016/j.physb.2016.07.033.
Pełny tekst źródłaAgrafonov, Yury V., i Ivan S. Petrushin. "Random First Order Transition from a Supercooled Liquid to an Ideal Glass (Review)". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, nr 3 (18.09.2020): 291–302. http://dx.doi.org/10.17308/kcmf.2020.22/2959.
Pełny tekst źródłaBonnet, Julien, Gad Suissa, Matthieu Raynal i Laurent Bouteiller. "Organogel formation rationalized by Hansen solubility parameters: influence of gelator structure". Soft Matter 11, nr 11 (2015): 2308–12. http://dx.doi.org/10.1039/c5sm00017c.
Pełny tekst źródłaGuda Vishnu, Karthik, i Alejandro Strachan. "Investigation of structural ordering in network forming ionic liquids: A molecular dynamics study". Journal of Chemical Physics 150, nr 14 (14.04.2019): 144904. http://dx.doi.org/10.1063/1.5082186.
Pełny tekst źródłaWilson, Mark, Paul A. Madden, Nikolai N. Medvedev, Alfons Geiger i Andreas Appelhagen. "Voids in network-forming liquids and their influence on the structure and dynamics". Journal of the Chemical Society, Faraday Transactions 94, nr 9 (1998): 1221–28. http://dx.doi.org/10.1039/a800365c.
Pełny tekst źródłaGalimzyanov, Bulat N., Maria A. Doronina i Anatolii V. Mokshin. "Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an Artificial Neural Network". Materials 16, nr 3 (28.01.2023): 1127. http://dx.doi.org/10.3390/ma16031127.
Pełny tekst źródłaSasaki, Takashi, Yuya Tsuzuki i Tatsuki Nakane. "A Dynamically Correlated Network Model for the Collective Dynamics in Glass-Forming Molecular Liquids and Polymers". Polymers 13, nr 19 (6.10.2021): 3424. http://dx.doi.org/10.3390/polym13193424.
Pełny tekst źródłaUmerska, Anita, Klaudia Bialek, Julija Zotova, Marcin Skotnicki i Lidia Tajber. "Anticrystal Engineering of Ketoprofen and Ester Local Anesthetics: Ionic Liquids or Deep Eutectic Mixtures?" Pharmaceutics 12, nr 4 (17.04.2020): 368. http://dx.doi.org/10.3390/pharmaceutics12040368.
Pełny tekst źródłaTurner, Adam H., i John D. Holbrey. "Investigation of glycerol hydrogen-bonding networks in choline chloride/glycerol eutectic-forming liquids using neutron diffraction". Physical Chemistry Chemical Physics 21, nr 39 (2019): 21782–89. http://dx.doi.org/10.1039/c9cp04343h.
Pełny tekst źródłaWu, Jingshi, Marcel Potuzak i Jonathan F. Stebbins. "High-temperature in situ 11B NMR study of network dynamics in boron-containing glass-forming liquids". Journal of Non-Crystalline Solids 357, nr 24 (grudzień 2011): 3944–51. http://dx.doi.org/10.1016/j.jnoncrysol.2011.08.013.
Pełny tekst źródłaMallamace, Francesco, Domenico Mallamace, Giuseppe Mensitieri, Sow-Hsin Chen, Paola Lanzafame i Georgia Papanikolaou. "The Water Polymorphism and the Liquid–Liquid Transition from Transport Data". Physchem 1, nr 2 (25.08.2021): 202–14. http://dx.doi.org/10.3390/physchem1020014.
Pełny tekst źródłaLiu, Hui Ru, Li Qiang Lv i Xing Chen Zhang. "Synthesis and Characterization of Super-Molecular Ionic Liquids". Advanced Materials Research 197-198 (luty 2011): 906–10. http://dx.doi.org/10.4028/www.scientific.net/amr.197-198.906.
Pełny tekst źródłaEgami, T. "Elementary excitation and energy landscape in simple liquids". Modern Physics Letters B 28, nr 14 (10.06.2014): 1430006. http://dx.doi.org/10.1142/s0217984914300063.
Pełny tekst źródłaBANERJEE, ATREYEE, MANOJ KUMAR NANDI i SARIKA MAITRA BHATTACHARYYA. "Validity of the Rosenfeld relationship: A comparative study of the network forming NTW model and other simple liquids". Journal of Chemical Sciences 129, nr 7 (2.06.2017): 793–800. http://dx.doi.org/10.1007/s12039-017-1249-7.
Pełny tekst źródłaMoreno, A. J., I. Saika-Voivod, E. Zaccarelli, E. La Nave, S. V. Buldyrev, P. Tartaglia i F. Sciortino. "Non-Gaussian energy landscape of a simple model for strong network-forming liquids: Accurate evaluation of the configurational entropy". Journal of Chemical Physics 124, nr 20 (28.05.2006): 204509. http://dx.doi.org/10.1063/1.2196879.
Pełny tekst źródłaMei, Baicheng, Yuxing Zhou i Kenneth S. Schweizer. "Experimental test of a predicted dynamics–structure–thermodynamics connection in molecularly complex glass-forming liquids". Proceedings of the National Academy of Sciences 118, nr 18 (26.04.2021): e2025341118. http://dx.doi.org/10.1073/pnas.2025341118.
Pełny tekst źródłaShiba, Hayato, Masatoshi Hanai, Toyotaro Suzumura i Takashi Shimokawabe. "BOTAN: BOnd TArgeting Network for prediction of slow glassy dynamics by machine learning relative motion". Journal of Chemical Physics 158, nr 8 (28.02.2023): 084503. http://dx.doi.org/10.1063/5.0129791.
Pełny tekst źródłaOzawa, Misaki, Kang Kim i Kunimasa Miyazaki. "Tuning pairwise potential can control the fragility of glass-forming liquids: from a tetrahedral network to isotropic soft sphere models". Journal of Statistical Mechanics: Theory and Experiment 2016, nr 7 (1.07.2016): 074002. http://dx.doi.org/10.1088/1742-5468/2016/07/074002.
Pełny tekst źródłaHong, N. V., M. T. Lan, N. T. Nhan i P. K. Hung. "Polyamorphism and origin of spatially heterogeneous dynamics in network-forming liquids under compression: Insight from visualization of molecular dynamics data". Applied Physics Letters 102, nr 19 (13.05.2013): 191908. http://dx.doi.org/10.1063/1.4807134.
Pełny tekst źródłaDabić, Predrag, Marko G. Nikolić, Sabina Kovač i Aleksandar Kremenović. "Polymorphism and photoluminescence properties of K3ErSi2O7". Acta Crystallographica Section C Structural Chemistry 75, nr 10 (25.09.2019): 1417–23. http://dx.doi.org/10.1107/s2053229619011926.
Pełny tekst źródłaKono, Yoshio, Curtis Kenney-Benson, Daijo Ikuta, Yuki Shibazaki, Yanbin Wang i Guoyin Shen. "Ultrahigh-pressure polyamorphism in GeO2 glass with coordination number >6". Proceedings of the National Academy of Sciences 113, nr 13 (14.03.2016): 3436–41. http://dx.doi.org/10.1073/pnas.1524304113.
Pełny tekst źródłaMizuno, Akitoshi, Shinji Kohara, Seiichi Matsumura, Masahito Watanabe, J. K. R. Weber i Masaki Takata. "Structure of Glass and Liquid Studied with a Conical Nozzle Levitation and Diffraction Technique". Materials Science Forum 539-543 (marzec 2007): 2012–17. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.2012.
Pełny tekst źródłaLin, Ruifan, Yingmin Jin, Yumeng Li, Xuebai Zhang i Yueping Xiong. "Recent Advances in Ionic Liquids—MOF Hybrid Electrolytes for Solid-State Electrolyte of Lithium Battery". Batteries 9, nr 6 (6.06.2023): 314. http://dx.doi.org/10.3390/batteries9060314.
Pełny tekst źródłaGagor, Anna, Alicja Waśkowska, Zbigniew Czapla i Slawomir Dacko. "Structural phase transitions in tetra(isopropylammonium) decachlorotricadmate(II), [(CH3)2CHNH3]4Cd3Cl10, crystal with a two-dimensional cadmium(II) halide network". Acta Crystallographica Section B Structural Science 67, nr 2 (19.02.2011): 122–29. http://dx.doi.org/10.1107/s0108768110054583.
Pełny tekst źródłaSchurmann, Kathrin, Monika Anton, Igor Ivanov, Constanze Richter, Hartmut Kuhn i Matthias Walther. "Molecular Basis for the Reduced Catalytic Activity of the Naturally Occurring T560M Mutant of Human 12/15-Lipoxygenase That Has Been Implicated in Coronary Artery Disease". Journal of Biological Chemistry 286, nr 27 (10.05.2011): 23920–27. http://dx.doi.org/10.1074/jbc.m110.211821.
Pełny tekst źródłaIchikawa, Takahiro, Yui Sasaki, Tsubasa Kobayashi, Hikaru Oshiro, Ayaka Ono i Hiroyuki Ohno. "Design of Ionic Liquid Crystals Forming Normal-Type Bicontinuous Cubic Phases with a 3D Continuous Ion Conductive Pathway". Crystals 9, nr 6 (14.06.2019): 309. http://dx.doi.org/10.3390/cryst9060309.
Pełny tekst źródłaVasile, Danut, Raluca Iancu, Camelia Bogdanici, Emil Ungureanu, Dana Ciobotea, Radu Ciuluvica i George Iancu. "Chemo-physical Properties and Biomedical Applications of Hyaluronic Acid in Medicine". Revista de Chimie 68, nr 2 (15.03.2017): 384–86. http://dx.doi.org/10.37358/rc.17.2.5458.
Pełny tekst źródłaZhao, Kun, Yeh-Jun Lim, Zhenying Liu, Houfang Long, Yunpeng Sun, Jin-Jian Hu, Chunyu Zhao i in. "Parkinson’s disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM". Proceedings of the National Academy of Sciences 117, nr 33 (31.07.2020): 20305–15. http://dx.doi.org/10.1073/pnas.1922741117.
Pełny tekst źródłaPeytavi, Régis, Frédéric R. Raymond, Dominic Gagné, François J. Picard, Guangyao Jia, Jim Zoval, Marc Madou i in. "Microfluidic Device for Rapid (<15 min) Automated Microarray Hybridization". Clinical Chemistry 51, nr 10 (1.10.2005): 1836–44. http://dx.doi.org/10.1373/clinchem.2005.052845.
Pełny tekst źródłaBhaumik, Himangsu, Giuseppe Foffi i Srikanth Sastry. "The role of annealing in determining the yielding behavior of glasses under cyclic shear deformation". Proceedings of the National Academy of Sciences 118, nr 16 (13.04.2021): e2100227118. http://dx.doi.org/10.1073/pnas.2100227118.
Pełny tekst źródłaSellerio, Alessandro L., Daniele Mari i Gérard Gremaud. "Fluidized States of Vibrated Granular Media Studied by Mechanical Spectroscopy". Solid State Phenomena 184 (styczeń 2012): 422–27. http://dx.doi.org/10.4028/www.scientific.net/ssp.184.422.
Pełny tekst źródłaShen, Qiong, i Yiqun Weng. "Alternative Splicing of NAC Transcription Factor Gene CmNST1 Is Associated with Naked Seed Mutation in Pumpkin, Cucurbita moschata". Genes 14, nr 5 (23.04.2023): 962. http://dx.doi.org/10.3390/genes14050962.
Pełny tekst źródłaPourebrahim, Rasoul, Rafael Heinz Montoya, Edward Ayoub, Joseph D. Khoury i Michael Andreeff. "Mdm2 Maintains Cholesterol Biosynthesis in Hematopoietic Stem/Progenitor Cells Independent of p53". Blood 138, Supplement 1 (5.11.2021): 1152. http://dx.doi.org/10.1182/blood-2021-152899.
Pełny tekst źródłaNoritake, Fumiya. "Diffusion mechanism of network-forming elements in silicate liquids". Journal of Non-Crystalline Solids, listopad 2020, 120512. http://dx.doi.org/10.1016/j.jnoncrysol.2020.120512.
Pełny tekst źródłaWilson, Mark, i Philip S. Salmon. "Network Topology and the Fragility of Tetrahedral Glass-Forming Liquids". Physical Review Letters 103, nr 15 (7.10.2009). http://dx.doi.org/10.1103/physrevlett.103.157801.
Pełny tekst źródłaYuan, Bing, Bruce Aitken i Sabyasachi Sen. "Rheology of Supercooled P-Se Glass-forming Liquids: From Networks to Molecules and the Emergence of Power-Law Relaxation Behavior". Journal of Chemical Physics, 23.05.2022. http://dx.doi.org/10.1063/5.0089659.
Pełny tekst źródłaFabian, R., i D. L. Sidebottom. "Dynamic light scattering in network-forming sodium ultraphosphate liquids near the glass transition". Physical Review B 80, nr 6 (26.08.2009). http://dx.doi.org/10.1103/physrevb.80.064201.
Pełny tekst źródłaFurukawa, Akira. "The Qualitative Difference in Flow Responses between Network-Forming Strong and Fragile Liquids". Journal of the Physical Society of Japan 92, nr 2 (15.02.2023). http://dx.doi.org/10.7566/jpsj.92.023802.
Pełny tekst źródłaSen, Sabyasachi, i Jeremy K. Mason. "Topological Constraint Theory for Network Glasses and Glass-Forming Liquids: A Rigid Polytope Approach". Frontiers in Materials 6 (4.09.2019). http://dx.doi.org/10.3389/fmats.2019.00213.
Pełny tekst źródłaBorisov, Alexander, i Ilya V. Veksler. "Immiscible silicate liquids: K and Fe distribution as a test for chemical equilibrium and insight into the kinetics of magma unmixing". Contributions to Mineralogy and Petrology 176, nr 6 (24.05.2021). http://dx.doi.org/10.1007/s00410-021-01798-1.
Pełny tekst źródła