Rozprawy doktorskie na temat „Polymers - Electrospinning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Polymers - Electrospinning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Norton, David. "Electrospinning of polymers". Thesis, University of Sheffield, 2006. http://etheses.whiterose.ac.uk/15166/.
Pełny tekst źródłaEda, Goki. "Effects of solution rheology on electrospinning of polystyrene". Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-042706-135317/.
Pełny tekst źródłaLin, Yinan. "Electrospinning Polymer Fibers for Design and Fabrication of New Materials". University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1310997689.
Pełny tekst źródłaHsu, Chen-Ming. "Electrospinning of Poly(£`-Caprolactone)". Digital WPI, 2003. https://digitalcommons.wpi.edu/etd-theses/485.
Pełny tekst źródłaHassounah, Ibrahim [Verfasser]. "Melt electrospinning of thermoplastic polymers / Ibrahim Hassounah". Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1023021420/34.
Pełny tekst źródłaKeulder, Liesl. "The preparation of polyolefin nanofibres by solution electrospinning". Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80277.
Pełny tekst źródłaENGLISH ABSTRACT: Solution electrospinning is a technique used to produce polymer micro- or nanofibres. Recently a great deal of research has been done on the application of polymer nanofibres produced by this method. The solution electrospinning of polyolefins have not been researched in-depth mainly due to the difficulty in dissolving these polymers in suitable electrospinning solvents. We managed to electrospin polypropylene copolymers at room temperature, obtaining both polymer micro- and nanofibres. A suitable solvent system was developed (cyclohexane/DMF/acetone) that allowed for the room temperature solution electrospinning of these crystalline polypropylene copolymers. It was also shown that using propylene-1-alkene copolymers with a low comonomer content was a facile way of producing crystalline polyolefins nano – and microfibers. Similar attempts to electrospin isotactic polypropylene were unsuccessful, even though lower molecular weight materials were used than in the case of the copolymers. This lead to an investigation of solution melting temperature by SCALLS. The copolymers showed great variance in their solution melting temperatures despite the fact that they all had more or less the same crystallinity and amount of comonomer, indicating that the type of comonomer played an important role in the solubility of the copolymer. The effect of different collectors was investigated, but in the end it was found that between spinning unto ice, foil on ice of just foil, foil still seemed to be the best collector. Comparing crystallinity of the polymer powders with that of the polymer fibres by DSC and WAXD, it was found that there is a difference in the crystallinity of the fibres and the powders. EVOH is a polymer with excellent properties and electropspinning of this polymer is relatively easy due to the fact that it dissolves quite easily in conductive solvents. DMF, Isopropanol/water and DMSO were all tested as suitable solvents and the morphology was compared through the use of SEM. The morphology of the fibres indicated that DMSO was the best solvent. The influence of the spinning parameters was determined for both systems of DMF and DMSO. These nanofibres were used as reinforcement in LDPE matrix and the mechanical properties of the LDPE matrix was improved with the addition of both aligned and unaligned fibres. The next step was the electrospinning of EVOH fibres containing MWCNT. TEM, FE-SEM and TGA were used to confirm the presence of the MWCNT as well as determine the distribution of the MWCNT inside the nanofibres. The nanotubes were distributed through the fibres; however agglomeration of the nanotubes did still take place. The nanofibres containing MWCNT were also used to make composites where the fibres were melted, leaving the MWCNT behind in the polymer matrix. This was done in both LDPE and EVOH matrices. The LDPE/MWCNT composites did not give positive results, on the other hand the EVOH/MWCNT composite showed an improvement in the mechanical properties compared to pure EVOH. The attachment of fluorescent dye molecules to the surface of the MWCNT was attempted and through fluorescent microscopy and the dispersion of the nanotubes inside the fibres as well as the composite could be seen. This study proved that polyolefin nanofibres could be obtained, giving rise to more applications for these versatile polymers. It also confirmed the importance of nanofibres as reinforcement and the use of nanofibres as a way to incorporate MWCNT in a polymer matrix.
AFRIKAANSE OPSOMMING: Elektrospin in ‘n oplosmiddel is ‘n tegniek wat gebruik word om polimeer mikro- en nanovesels te produseer. Die afgelope tyd word baie navorsing gedoen oor die aanwending van polimeer nanovesels wat geproduseer word op hierdie manier. Daar is nog min navorsing gepubliseer wat handel oor die elektrospin van poliolefiene uit ‘n oplosmiddel, deels oor hoe moeilik dit is om ‘n geskikte elektrospin oplosmiddel te vind vir hierdie polimere. In hierdie studie het ons mikro- en nanovesels verkry deur polipropileen kopolimere te elektrospin by kamertemperatuur. Die polimere is opgelos in ‘n oplosmiddel sisteem wat bestaan uit sikloheksaan/dimetielformamied/asetoon, by hoë temperatuur en het toegelaat dat die polimere in oplossing bly by kamertemperatuur. Hierdie diverse kopolimere het verskillende resultate gegee, sommige polimere het mikrovesels produseer, waar ander nanovesels geproduseer het. Die vessel morfologie is ondersoek deur die gebruik van Skandering Elektron Mikroskopie (SEM) en daar is gevind dat die vesels nie ‘n gladde voorkoms het nie, maar dat daar kraalvormige morfologie gesien kon word. Om dit te voorkom is sout by die oplosmiddel sisteem gevoeg. Die invloed van die verskillende parameters op die vesels se deursnit is ondersoek vir al die kopolimere. Die byvoeging van sout het gelei tot ‘n meer gladde vesel morfologie. Die effek van die gebruik van verskillende oppervlaktes om die vesels op te vang is ondersoek en die die kristalliniteit van die polimeer poeiers is vergelyk met die kristalliniteit van die polimeer vesels met die hulp van DSC en WAXD. ‘n Poging is aangewend om isotaktiese polipropileen te elektrospin uit oplossing, maar ons kon nie daarin slag om die polimeer op te los nie, al was die molekulêre gewig minder as die van die kopolimere. Dit het gelei tot die ondersoek van die smeltpunt temperatuur in oplossing deur die gebruik van oplossing kristallisasie-analise deur laser lig verstrooing (SCALLS). Al die kopolimere het min of meer dieselfde kristalliniteit en hoeveelheid komonomer bevat, tog het hulle smeltpunt temperatuur in oplossing baie verskil. Dit het gedui op die feit dat die tipe komonomeer ‘n groot rol speel in die oplosbaarheid van die kopolimeer. Die elektrospin van etileen-ko-vinielalkohol (EVOH) is ook ondersoek. DMF, Isopropanol/Water en Dimetielsulfoksied (DMSO) is getoets as geskikte oplosmiddels en die morfologie van die vesels is vergelyk deur die gebruk van SEM. Die tyd wat die polimeer in oplossing gebly het asook die morfologie van die vesels, het aangedui dat DMSO die mees geskikte oplosmiddel was. Die invloed van die elektrospin parameters was vasgestel vir beide DMF en DMSO sisteme. Hierdie nanovesels is gebruik as versterking in ‘n LDPE matriks en die meganiese eienskappe van die LDPE matriks is verbeter deur die toevoeging van beide nie-geweefde en gerigte veselsopppervlakte. Die volgende stap was die elektrospin van EVOH vesels wat multi-ommuurde koolstof nanobuisies (MWCNT) bevat. TEM, FE-SEM en TGA was gebruik om te bevestig dat die vesels wel MWCNT bevat asook om die verspreiding van MWCNT in die vesels aan te dui. Die nanobuisies was versprei deur die vesels, maar bundels nanobuisies het tog voorkom in sommige plekke. Die nanovesels wat MWCNT bevat is ook gebruik om nanosamestellings te maak, waar die vesels gesmelt is om net MWCNT agter te laat in die polimeer matriks. Hierdie was gedoen in beide LDPE en EVOH matrikse. Geen positiewe resultate is verkry vir die LDPE/MWCNT nanosamestelling nie, maar die EVOH/MWCNT nanosamestelling het aan die anderkant ‘n groot verbetering getoon in die meganiese eienskappe in vergelyking met EVOH sonder MWCNT. ‘n Poging was aangewend om fluoreseerende molekules aan die oppervlak van MWCNT te voeg en deur fluoresensie mikroskopie kon die verspreiding van die MWCNT in die vesels asook in die nanosamestellings gesien word. Hierdie studie het bewys dat poliolefien nanovesels gemaak kan word wat lei tot die aanwending van hierdie polimere in nog meer toepassings. Dit het ook die belangrikheid van die gebruik van nanovesels as versterking in nanosamestellings bevestig asook die gebruik van nanovesels as ‘n manier om MWCNT in ‘n matriks te plaas.
Xin, Yu. "Electrospinning Process and Resulting Nanofibers". University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1321286561.
Pełny tekst źródłaGao, Yaohua. "Electrospinning of Resorbable Amino-Acid Based Poly(ester urea)s for Regenerative Medicine". University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1460374617.
Pełny tekst źródłaDaga, Vikram Kumar. "Rheology and electrospinning of neat and laponite-filled poly(ethylene oxide) solutions". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file Mb., 133 p, 2006. http://wwwlib.umi.com/dissertations/fullcit?1435916.
Pełny tekst źródłaKakade, Meghana Vasant. "Uniaxial orientation of polymer molecules via electrospinning". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 53 p, 2007. http://proquest.umi.com/pqdweb?did=1338927121&sid=11&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Pełny tekst źródłaShang, Zhihao. "Water Collection from Air by Electrospinning Hygroscopic Nanofibers". University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1549363835073664.
Pełny tekst źródłaPan, Lin. "Electrospinning of Spring Supported Tubular Nanofiber Media and Its Application". University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron157359914742377.
Pełny tekst źródłaPawlowski, Kristin Joy. "Electrospinning as a Processing Method for Electroactive Polymers and Composites". VCU Scholars Compass, 2004. http://scholarscompass.vcu.edu/etd/1171.
Pełny tekst źródłaLyons, Jason Michael Ko Frank K. "Melt-electrospinning of thermoplastic polymers : an experimental and theoretical analysis /". Philadelphia, Pa. : Drexel University, 2004. http://dspace.library.drexel.edu/handle/1860/367.
Pełny tekst źródłaKhan, Saima N. "Electrospinning Polymer Nanofibers-Electrical and Optical Characterization". Ohio : Ohio University, 2007. http://www.ohiolink.edu/etd/view.cgi?ohiou1200600595.
Pełny tekst źródłaCasper, Cheryl L. "Structure and properties of electrospun polymer fibers and applications in biomedical engineering". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 5.69 Mb., 165 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3200539.
Pełny tekst źródłaLiu, Suqi. "Droplet-jet shape in electrospinning: real-time feedback control of nanofiber diameter". University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1573221625942164.
Pełny tekst źródłaSwart, Morne. "Synthesis and characterization of electrospun organic-inorganic hybrid graft copolymer nanofibers of poly(methyl methacrylate) and polydimethylsiloxane". Thesis, Link to the online version, 2007. http://hdl.handle.net/10019/718.
Pełny tekst źródłaWen, Shihao. "Design Of Multi-Drug Release Coaxial Electrospun Mat Targeting Infection And Inflammation". University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1468852133.
Pełny tekst źródłaMa, Wenbo. "ELECTROSPUN MATS WITH CHEMICAL MODIFIED POLY(ε-CAPROLACTONE) FOR WOUND HEALING APPLICATION". University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1555636361181491.
Pełny tekst źródłaLiu, Xiao. "Effective control of cell behavior on conducting polymers". Department of Chemistry - Faculty of Science, 2009. http://ro.uow.edu.au/theses/3046.
Pełny tekst źródłaYan, Han. "Electrospinning-Derived Carbon/Graphite Nanofiber Mats from a Polyimide-Mesophase Pitch Blend Precursor for Flexible Thermal Management Thin Films". University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1309678439.
Pełny tekst źródłaCinar, Simge. "Synthesis Of Silver Nanoparticles And Cable Like Structures Through Coaxial Electrospinning". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12611472/index.pdf.
Pełny tekst źródłahowever they could be considered as assemblies of nanowires. Nanocable structure can be defined as a core-shell structure formed by a polymeric shell and a metal core that runs continuously within this shell. To produce nanocables, two main steps were carried out. Firstly, monodispersed silver metal nanoparticles to be aligned within the cable core were produced. Investigations on reduction reactions in the presence of strong and weak reducing agents and different capping agents revealed the importance of the kinetics of reduction in the production of monodispersed nanoparticles. Use of capping agents to give a positive reduction potential, resulted in the slow reduction rates that was critical for fine tuning of the final particle sizes between 1-10 nm. Hydrazine hydrate and oleylamine/ oleic acid systems were used as strong and weak reducing agents, respectively. By using weak reducing agent, monodisperse spherical silver nanoparticles with the diameter of 2.7 nm were produced. It was shown that particles with controlled diameter and size distribution can be obtained by tuning the system parameters. Secondly, particles produced as such were electrospun within the core of the polymer nanofibers and long continuous nanocables were produced. Polyvinyl pyrrolidone and polycaprolactone were used in shell part of nanocables. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), photon correlation spectroscopy (PCS), X-ray diffraction (XRD) and surface plasmon resonance spectroscopy (SPR) analyses were carried out in order to understand the mechanism by which the nanoparticles were reduced and for further characterization of the product.
Liu, Kaiyi. "Characterization and Control of an Electrospinning Process". University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1355239985.
Pełny tekst źródłaQaqish, Walid P. "Electrospinning of L-Tyrosine Polyurethane Scaffolds for Gene Delivery". University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1416997407.
Pełny tekst źródłaDai, Xiaoshu. "Synthesis and Processing of Polymers for Biomedical Applications". Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-dissertations/431.
Pełny tekst źródłaAhirwal, Deepak. "Large deformation shear and elongation rheology of polymers for electrospinning and other Industrial Processes". Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-01065971.
Pełny tekst źródłaArnoult, Olivier. "A NOVEL BENIGN SOLUTION FOR COLLAGEN PROCESSING". Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1270491592.
Pełny tekst źródłaDepartment of Macromolecular Science and Engineering Title from PDF (viewed on 2010-05-25) Includes abstract Includes bibliographical references and appendices Available online via the OhioLINK ETD Center
Yao, Jian. "High strength and high modulus electrospun nanofibres". Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/9120.
Pełny tekst źródłaGivens, Steven Romel. "The effect of solvent properties on electrospun polymer fibers and applications in biomaterials". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 163 p, 2008. http://proquest.umi.com/pqdweb?did=1597616611&sid=9&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Pełny tekst źródłaBshena, Osama E. S. "Synthesis of permanent non-leaching antimicrobial polymer nanofibers". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20160.
Pełny tekst źródłaENGLISH ABSTRACT: Antimicrobial fibers are very useful in various fields such as air and water purification, wound dressings and protective bandages, where sterile environments are essential. The nonwoven nanofiber mats or membranes are able to filter out microorganisms and potentially kill several threatening pathogenic bacteria. In this thesis, a variety of styrene-maleimide copolymer derivatives were prepared based on the modification of poly(styrene-co-maleic anhydride with various primary amine compounds. All prepared copolymer derivatives were electrospun to nanofiber mats using the needle electrospinning technique. For the characterization, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to study the thermal properties of the electrospun fiber mats. Scanning electron microscopy (SEM) was carried out to observe fiber dimensions and morphology. The antibacterial activity of electrospun fiber mats was evaluated against different bacteria including Staphylococcus aureus (Gram-positive), Escherichia coli and Pseudomonas aeruginosa (Gram-negative). The evaluation study utilized different tools to test for antibacterial activity and mode of cell death, including bioluminescent imaging, fluorescence imaging and the viable cell counting method. Excellent antimicrobial activity was obtained against the different strains especially against Staphylococcus aureus. Fiber mats containing tertiary amino groups, phenol or quaternary ammonium groups had the strongest antimicrobial properties.
AFRIKAANSE OPSOMMING: Antimikrobiese vesels is baie nuttig in verskeie toepassingsgebiede, soos lug- en watersuiwering, wondbedekkings en beskermende verbande, waar ‘n steriele omgewing noodsaaklik is. Die ongeweefde nanovesel matte of membrane is in staat om mikroorganismes te verwyder deur filtrasie, maar kan ook verskeie patogeniese bakterieë doodmaak. In hierdie proefskrif is ‘n verskeidenheid stireen-maleimied kopolimeer afgeleides gesintetiseer, gebaseer op die modifikasie van poli(stireen-ko-maleïne anhidried) met verskeie primêre amien verbindings. Nanovesel matte van al die gesintetiseerde kopolimeer afgeleides is gemaak deur gebruik te maak van die naald-elektrospin tegniek. Die termiese eienskappe van hierdie nanovesel matte is bestudeer deur gebruik te maak van differensiële skandeer kalorimetrie (DSK) en termogravitasie analiese (TGA) as karakteriseringsmetodes. Die vesel dimensies en morfologie is bestudeer deur skandeer elektronmikroskopie as karakteriseringsmetode te gebruik. Die antibakteriële aktiwiteit van die gespinde vesel matte is geëvalueer teen verskillende bakterieë, naamlik Staphylococcus aureus (Gram-positief), Escherichia coli en Pseudomonas aeruginosa (Gram-negatief). Die evalueringstudie het verskillende instrumente gebruik om vir antibakteriële aktiwiteit en meganisme van seldood te toets, insluitend bioluminiserings beelding, fluoressensie beelding en die lewensvatbare sel tellingsmetode. Uitstekende antimikrobiese aktiwiteit is verkry teen die verskillende rasse, veral teen Staphylococcus aureus. Vesel matte met tersiêre aminogroepe, fenol of kwaternêre ammoniumgroepe het die sterkste antimikrobiese eienskappe gehad.
Hu, Yupeng. "ELECTROSPUN NANOFIBERS FOR PROGRAMMABLE DRUG DELIVERY SYSTEM SEQUENTIALLY TARGETING INFLAMMATION AND INFECTION". University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1436835377.
Pełny tekst źródłaBaji, Avinash. "Development of High Toughness Bioactive Composites Using Electrospinning Techniques". University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1222895930.
Pełny tekst źródłaMartrou, Guillaume. "Dynamique d'interfaces chargées et application aux matériaux fibreux". Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0296/document.
Pełny tekst źródłaInterfaces between two fluids can lead to various interfacial shape instabilities if an electrical field is applied. Leading, for instance, to micrometric droplets or jets formation. Controlling those instabilities is much-needed for an optimal fabrication of microspheres or microfibers : size, physicochemical properties, dispersion and macroscopic spatial structuring of aggregates of those kind of objects. This diversity is based in the competition between surface tension and gravity forces with gravity during the electrodynamics of fluids under electric field induced by electrical charges, polarization charges, electrical discharges and ionic wind. The experimental thesis deals with two main topics. The first one is a precise understanding of spatiotemporals phenomena occurring in a configuration made of a metallic injector raised to high voltage placed above a liquid bath. We present the formation of an original instability leading to a macroscopic bell-shaped link between both electrodes and its non linear characterization. The bifurcation is subcritical and imperfect. The second topic, based on the experience gained with the first one, is an original method of fabrication of microfibers modified in only one step by wet electrospinning. The chosen electrospun polymer is PSMA and the one used for modification is PEGDA. This study has been realized with a catalyze application context. To do so, fibers has been functionalized with peroxydase (HRP) as the model protein. The results especially show a better temporal stability and possible reuse compared to catalysis with standard methods
Lolla, Dinesh. "FABRICATION, ATOMIC SCALE IMAGING, POLARIZATION OF POLYVINYLIDENE FLUORIDE NANOFIBERS AND APPLICATIONS AS ELECTRETS". University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1469027639.
Pełny tekst źródłaLalani, Reza. "Preparation and Biocompatibility of Electrospun Zwitterionic Poly(Sulfobetaine Methacrylate) for Wound Dressing Applications". University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1366197780.
Pełny tekst źródłaLiu, Jing. "Carbon nanotube/polymer composites and novel micro- and nano-structured electrospun polymer materials". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/22673.
Pełny tekst źródłaCommittee Chair: Kumar, Satish; Committee Member: Carr, Wallace; Committee Member: Graham, Samuel; Committee Member: Griffin, Anselm; Committee Member: Yao, Donggang.
Guo, Qiongyu. "POSS-Based Biodegradable Polymers for Stent Applications: Electroprocessing, Characterization and Controlled Drug Release". Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1259706279.
Pełny tekst źródłaTitle from PDF (viewed on 2009-12-22) Department of Macromolecular Science and Engineering Includes abstract Includes bibliographical references and appendices Available online via the OhioLINK ETD Center
Rockwood, Danielle N. "Characterization of electrospun polymer fibers for applications in cardiac tissue engineering and regenerative medicine". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 155 p, 2008. http://proquest.umi.com/pqdweb?did=1459913201&sid=1&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Pełny tekst źródłaMcClellan, Phillip Eugene. "Electrospun PLLA Nanofiber Coating of Scaffolds for Applications in Bone Tissue Engineering". University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1438340950.
Pełny tekst źródłaMoutsatsou, Panagiota. "Production and evaluation of electrospun polyaniline/biopolymer composite nanofibres for medical applications". Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/25673.
Pełny tekst źródłaDruesedow, Charles Joseph. "Pressure Control System for the Electrospinning Process: Non-invasive Fluid Level Detection Using Infrared and Ultrasonic Sensors". University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1217275502.
Pełny tekst źródłaKampeerapappun, Piyaporn. "The Design, Characteristics, and Application of Polyurethane Dressings using the Electrospinning Process". University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1207243006.
Pełny tekst źródłaBorges, Thiago FCC. "MULTIFUNCTIONAL SCAFFOLDS FOR DRUG-DELIVERY THERAPIES". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1449014240.
Pełny tekst źródłaJose, Moncy V. "Multi-component nanofibrous scaffolds with tunable properties for bone tissue engineering". Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2009p/jose.pdf.
Pełny tekst źródłaTitle from PDF title page (viewed Sept. 2, 2009). Additional advisors: Uday Vaidya, Burton Patterson, Susan Bellis, Mark Weaver, Vinoy Thomas. Includes bibliographical references.
Kincer, Matthew Ryan. "Polymeric templating and alignment of fullerenes". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42879.
Pełny tekst źródłaBrown, Rebecca Huyck. "Effects of Functionality and Charge in the Design of Acrylic Polymers". Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/28908.
Pełny tekst źródłaPh. D.
Smith, Meghan Elisabeth. "Biologically Functional Scaffolds for Tissue Engineering and Drug Delivery, Produced through Electrostatic Processing". Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1251224066.
Pełny tekst źródłaTitle from PDF (viewed on 2009-12-30) Department of Chemical Engineering Includes abstract Includes bibliographical references and appendices Available online via the OhioLINK ETD Center
Shah, Parth Nimish. "Biocompatibility Analysis and Biomedical Device Development Using Novel L-Tyrosine Based Polymers". University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1238781002.
Pełny tekst źródłaNavaporn, Kaerkitcha. "Materials design and processing development of electrospun nanofibers for energy conversion systems". Kyoto University, 2018. http://hdl.handle.net/2433/232391.
Pełny tekst źródła