Gotowa bibliografia na temat „Polymers-applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Polymers-applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Polymers-applications"
Priya, V. Sri Vajra, Hare Krishna Roy, N. jyothi i N. Lakshmi Prasanthi. "Polymers in Drug Delivery Technology, Types of Polymers and Applications". Scholars Academic Journal of Pharmacy 5, nr 7 (lipiec 2016): 305–8. http://dx.doi.org/10.21276/sajp.2016.5.7.7.
Pełny tekst źródłaCemka, Zuzanna, Paweł Szarlej, Edyta Piłat, Przemysław Gnatowski, Maciej Sienkiewicz i Justyna Kucińska-Lipka. "Hydrogels Based on Natural Polymers for Cardiac Applications". Chemistry & Chemical Technology 16, nr 4 (22.12.2022): 564–72. http://dx.doi.org/10.23939/chcht16.04.564.
Pełny tekst źródłaHazar Yoruç, Afife Binnaz, i Volkan Uğraşkan. "Green Polymers and Applications". Afyon Kocatepe University Journal of Sciences and Engineering 17, nr 1 (1.03.2017): 318–37. http://dx.doi.org/10.5578/fmbd.53940.
Pełny tekst źródłaKobayashi, Yukio. "Applications of conductive polymers." Kobunshi 37, nr 7 (1988): 534–37. http://dx.doi.org/10.1295/kobunshi.37.534.
Pełny tekst źródłaAdhikari, Basudam, i Sarmishtha Majumdar. "Polymers in sensor applications". Progress in Polymer Science 29, nr 7 (lipiec 2004): 699–766. http://dx.doi.org/10.1016/j.progpolymsci.2004.03.002.
Pełny tekst źródłaZheng, Liuchun, Harihara S. Sundaram, Zhiyong Wei, Chuncheng Li i Zhefan Yuan. "Applications of zwitterionic polymers". Reactive and Functional Polymers 118 (wrzesień 2017): 51–61. http://dx.doi.org/10.1016/j.reactfunctpolym.2017.07.006.
Pełny tekst źródłaWnek, Gary. "Conducting polymers: Special applications". Journal of Solid State Chemistry 74, nr 2 (czerwiec 1988): 438. http://dx.doi.org/10.1016/0022-4596(88)90378-7.
Pełny tekst źródłaWright, W. W. "Polymers in aerospace applications". Materials & Design 12, nr 4 (sierpień 1991): 222–27. http://dx.doi.org/10.1016/0261-3069(91)90169-5.
Pełny tekst źródłaSOBCZAK, MARCIN, EWA OLEDZKA, WACLAW L. KOLODZIEJSKI i RAFAL KUZMICZ. "Polymers for pharmaceutical applications". Polimery 52, nr 06 (czerwiec 2007): 411–20. http://dx.doi.org/10.14314/polimery.2007.411.
Pełny tekst źródłaSimanek, Eric. "Polymers for Biomedical Applications". Molecular Pharmaceutics 7, nr 4 (2.08.2010): 921. http://dx.doi.org/10.1021/mp100213f.
Pełny tekst źródłaRozprawy doktorskie na temat "Polymers-applications"
Patil, Satish Amrutrao. "Ladder polymers for photonic applications". [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972447490.
Pełny tekst źródłaLochab, Bimlesh. "Polymers for electro-optic applications". Thesis, University of Oxford, 2006. http://ora.ox.ac.uk/objects/uuid:34ac7813-b315-415c-ac8a-eac269c23432.
Pełny tekst źródłaKishi, Mariko. "Synthetic polymers for ophthalmic applications". Thesis, Aston University, 1987. http://publications.aston.ac.uk/9721/.
Pełny tekst źródłaBogdanowicz, Krzysztof Artur. "Liquid Crystalline Polymers for Smart Applications". Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/321835.
Pełny tekst źródłaActualmente, PCL que incorporan elementos activos en la estructura (p.e., grupos de foto-sensibles, dendrones, etc.) conducen a un material selectivamente sensible. Se informa de que los polímeros se pueden aplicar en varios sistemas p.e. como materiales con memoria de forma, sensores o pantallas foto-ópticas. Nuestros estudios se centran en dos aplicaciones diferentes: microcápsulas fotosensibles para sistemas de entrega controlada y las membranas autoensambladas conductoras de protones para la fotosíntesis artificial. La versatilidad y las propiedades anisotrópicas de PCL, los hacen como candidatos ideales para numerosos aplicaciones inteligentes. Para obtener sistemas con liberación foto-activa, una familia de copolímeros, que contiene alfa-estilbeno y diferentes espaciadores se han diseñado y sintetizado. Alfa-estilbeno es un mesogéno foto-activo. Las microcápsulas basadas de alfa-metilestilbeno, con vainillina en núcleo, estaban preparados. Experimento de liberación con y sin fotoirradiación demostró la eficacia de este sistema. CLP de estructura adecuada para auto-ensamblaje en una estructura columnar que podría ser efectivo en el transporte de protones selectivo. Alineación homeotrópica de columnas en una membrana polimérica permite conseguir conductividad de protones. Objetivo de nuestro trabajo fue: lograr estructuras organizadas utilizando poliaminas modificadas con un mesógeno dendrítico en posición lateral; preparación de membranas orientadas usando estos materiales poliméricos; evaluar la eficacia de las membranas hacia el transporte de protones. Se prepararon membranas híbridas de cerámica/poliamina. El material mostró alta conductividad de protones selectiva y transporte agua-independiente.
Liquid Crystalline Polymers (LCPs) possess properties which are a combination of crystalline solids and fluids. Currently, LCPs which incorporate active elements into the structure (i.e. photo-sensitive groups, dendrons, etc.) lead to selectively sensitive material. It is reported, that those polymers can be applied in a variety of systems i.e. as memory-shape materials, sensors or photo-optical displays. Our studies are focused on two different applications: photosensitive microcapsules for controlled delivery systems and self-assembly proton-conducting membranes for artificial photosynthesis. The extreme versatility and the characteristic anisotropic properties of LCPs, make them the ideal candidates for numerous smart applications. To achieve systems with photo-triggered release, a family of copolymers which contained alpha-methylstilbene and different spacers were designed and synthesized. Alpha-methylstilbene is a well-known photo-active mesogenic group. Microcapsules based on alpha-methylstilbene containing vanillin as a core were prepared. Release experiment in the presence and the absence of photoirradiation proved the effectiveness of this system. LC polymers of proper structure self-assembly into a columnar structure which could be effective in selective proton transport. Homeotropic alignment of columns in a polymeric membrane allows to achieve proton-conductivity. Aim of our work was: achieving organized structures using polyamine modified with a dendritic mesogen in side position; preparing oriented membranes based on this polymeric materials;assessing the effectiveness of the prepared membranes toward proton transport. Hybrid ceramic/polyamine membranes were prepared. The new material showed high selective proton conductivity and water independent transport.
Inal, Sahika. "Responsive polymers for optical sensing applications". Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2014/7080/.
Pełny tekst źródłaAls Reaktion auf bestimmte äußere Stimuli ändern bestimmte wasserlösliche Polymere reversibel ihren physikalischen Zustand. Dieser Vorgang kann mithilfe von Fluorophoren, die in die Polymerstrukturen eingebaut werden und deren Fluoreszenzeigenschaften vom Polymer¬zustand abhängen, detektiert werden. Diese Idee ist der Ausgangspunkt der vorliegenden Arbeit, die sich damit beschäftigt, wie äußerlich induzierte Änderungen der Löslichkeit solcher Polymere mit kovalent gebundenen Fluorophoren in Wasser in ein deutlich messbares Fluoreszenzsignal übersetzt werden können. Dazu werden photophysikalische Phänomene wie Fluoreszenz-Resonanz¬energie¬transfer und Solvatochromie ausgenutzt. In Kombination mit einem responsiven Polymergerüst wird es möglich, verschiedene Stimuli wie Lösungs¬temperatur oder Ionenstärke, oder auch Assoziation-Dissoziation Reaktionen mit anderen Makromolekülen oder biochemische Bindungs¬reaktionen über die Änderung von Fluorezenz¬farbe bzw. –Intensität autonom mit bloßem Auge zu detektieren. Unter anderem wurde ein wässriger ratiometrischer Temperatur- und Salzsensor entwickelt, der auf der komplexen supramolekularen Struktur eines thermoresponsiven Copolymers und eines thiophenbasierten konjugierten Polyelektrolyts beruht. Die Anbindung solvato¬chromer Fluorophore erlaubte den empfindlichen Nachweis einer Temperatur¬änderung oder des Vorhandenseins von Analyten. Komplexere Phänomene wie das kompetitive Anbinden von Analyten ließen sich hochempfindlich steuern und auslesen, indem gleichzeitig die Sensitivität dieser Polymeren gegenüber der Temperatur und spezifischen Antikörpern ausgenutzt wurde. Überraschenderweise wiesen die hier untersuchten thermoresponsiven Polymere wie poly-N-isopropylacrylamid (pNIPAm) oder poly-Oligoethylenglykolmethacrylate (pOEGMA) große Unterschiede bzgl. ihrer responsiven optischen Eigenschaften auf. Dies erforderte eine ausführliche Charakterisierung des Fluoreszenz- und Aggregationsverhaltens, unter- und oberhalb des Phasenübergangs, im Bezug auf die chemische Struktur. Ein Ergebnis war, dass alle drei Polymertypen sehr ähnliche temperaturabhängige makroskopische Absorptionseigenschaften aufweisen, während sich die Eigenschaften auf molekularer Ebene, wie der Hydratisierungsgrad oder die intermolekulare Polymerkettenaggregation, bei diesen Polymeren sehr unterschiedlich. Diese Arbeit zeigt damit anhand zweier sehr etablierter thermoresponsiver Polymere, nämlich pNIPAm und pOEGMA, das die chemische Struktur entscheidend für den Einsatz dieser Polymere in fluoreszenzbasierten Sensoren ist. Diese Ergebnisse haben große Bedeutung für die gezielte Entwicklung von Polymermaterialien für fluoreszenzbasierte Assays.
Wang, Jinfang. "Xanthine-imprinted polymers for decaffeination applications". Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431777.
Pełny tekst źródłaSpampinato, Nicoletta. "Ferroelectric polymers for organic electronic applications". Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0392/document.
Pełny tekst źródłaOrganic electronics represent a realistic alternative to conventional silicon-based technologies through the design, synthesis and implementation of functional organic materials into light and flexible devices. Organic materials, such as small molecules or organic polymers, are advantageous for their low-cost, flexibility and easy processing. Thanks to the economical and timesaving advantages, organic electronics have emerged as an innovative field with application in energy, environment, health, information and communication technologies.Organic electronics originates from the discovery of polymers with semiconducting functionalities. However, one should not neglect another class of outstanding polymers, the ferroelectric polymers. The electroactive nature of ferroelectric polymers, which are also pyroelectric and piezoelectric, combined with the intrinsic advantages of polymers have designated them as constituent elements of a widespread range of organic electronic devices. The most well-known family of ferroelectric polymers is that of poly(vinylidene fluoride), P(VDF), and its copolymers with trifluoroethylene, P(VDF-co-TrFE). Energy harvesting, data storage and sensing, main applications of organic electronics, can potentially all be realised using these exceptional functional materials.Since ferroelectricity is a structure-dependent property an insight into the interrelations between structure and final ferroelectric properties is indispensable in order to improve existing applications of ferroelectric polymers in organic electronics and to promote the introduction of P(VDF-co-TrFE) in new application fields. P(VDF-co-TrFE) as semi-crystalline polymer possess crystalline properties which are sensitive to thermal treatment. Since only the crystalline regions contribute to ferroelectric switching and not the amorphous ones, the degree of crystallinity is a key factor to modulate the ferroelectric properties. Moreover, crystallites orientation as well as the presence of defects within the crystallites are crucial parameters playing an important role in defining the final performance of the devices in which P(VDF-co-TrFE) is incorporated.Herein stands the aim of this thesis: reach an exhaustive understanding of processing-structure-function relationships that will serve as tool to modulate ferroelectric devices performances.Going one step further, the potential applications of P(VDF-co-TrFE) in organic electronics are explored by investigating it in: (1) medical piezoelectric catheter sensors for measuring cardiac function and eventually for detecting cardiac disease and (2) electronic devices in which P(VDF-co-TrFE) is blended with the semiconducting polymer poly(3-hexylthiophene), P3HT. The latter has already been applied in non-volatile ferroelectric memory diodes and the potential use in organic photovoltaics is explored
Kuroda, Kenichi 1972. "Thermally responsive polymers and their applications". Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29641.
Pełny tekst źródłaVita.
Includes bibliographical references.
This thesis focuses on development of polymeric materials that can alter their functions according to temperature changes. We chose poly(N-isopropylacrylamide) (polyNIPA) as a platform, which phase-separates from water upon heating. The thermally responsive properties and applications of polyNIPA are introduced in Chapter One. In Chapter Two, we described the synthesis of polyNIPA gels with an imidazole comomoer and examined copper ion adsorption by the swollen (room temperature) and shrunken gels (60⁰C). The data analysis using a Langmuir adsorption isotherm indicates that the imidazole groups form 2:1 and 4:1 complexes with a copper ion in the swollen and shrunken gels, respectively, which suggests that thermal gel swelling and shrinking control the formation of multivalent Cu complexes by changing the distance among imidazole groups. In Chapters Three to Six, the synthesis of polyNIPA-conjugated polymer block copolymers and their applications are described. Non-ionic water-soluble poly(phenylene-ethynylene)s (PPEs) (Chapter Three) were used as conjugated polymer segments in the block copolymers. In a route to synthesis of the block copolymers, atom transfer radical polymerization (ATRP) and nitroxide-mediated radical polymerization (NMRP) of NIPA were developed. Incorporation of ATRP or NMRP initiators to the polymer ends of PPEs and the following polymerizations of NIPA were expected to provide tri-block copolymers with precise structures. The ATRP method produced pure polyNIPA with monodisperse and defined molecular weights (Chapter Four). However, endcapping of PPEs with an ATRP initiator ((α-chloroamide) was not successful due to its instability to PPE polymerization conditions (Chapter Five).
(cont.) On the other hand, PPEs could be endcapped with a NMRP initiator (a tert-butyl nitroxide derivative), and the following NMRP of NIPA provided the tri-block copolymers (Chapter Six), phase-separate from aqueous solutions upon heating due to the polyNIPA aggregation. In Chapter Six, we examined fluorescence resonance energy transfer (FRET) between a PPE-polyNIPA block copolymer and Rhodamine B (RhB) bound to polyNIPA. The RhB emission from the polymer precipitates produced by thermally induced phase-separation from the aqueous mixtures increased relative to that from the solutions, which indicates that thermal precipitation brought the PPE and RhB within the F6rster radius of each other and induced FRET between the PPE and RhB.
by Kenichi Kuroda.
Ph.D.
Maine, Elicia M. A. (Margaret Anne). "Future of polymers in automotive applications". Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10509.
Pełny tekst źródłaSvensson, Mikael. "Conducting redox polymers for battery applications". Thesis, Uppsala universitet, Strukturkemi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415137.
Pełny tekst źródłaKsiążki na temat "Polymers-applications"
Seymour, Raymond B., i Herman F. Mark, red. Applications of Polymers. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5448-2.
Pełny tekst źródła1912-, Seymour Raymond Benedict, Mark H. F. 1895-, Battista O. A. 1917- i Phillips Petroleum Company, red. Applications of polymers. New York: Plenum Press, 1988.
Znajdź pełny tekst źródłaChanda, Manas. Industrial Polymers, Specialty Polymers, and Their Applications. London: Taylor and Francis, 2008.
Znajdź pełny tekst źródłaBritton, C. F. Polymers in marine applications. Oxford: Pergamon Press, 1990.
Znajdź pełny tekst źródłaMahapatro, Anil, i Ankur S. Kulshrestha, red. Polymers for Biomedical Applications. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0977.
Pełny tekst źródłaScrosati, Bruno, red. Applications of Electroactive Polymers. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1568-1.
Pełny tekst źródłaGutiérrez, Tomy J., red. Polymers for Food Applications. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94625-2.
Pełny tekst źródłaScrosati, Bruno. Applications of Electroactive Polymers. Dordrecht: Springer Netherlands, 1993.
Znajdź pełny tekst źródłaBruno, Scrosati, red. Applications of electroactive polymers. London: Chapman & Hall, 1993.
Znajdź pełny tekst źródłaPolymers for packaging applications. Toronto: Apple Academic Press, 2015.
Znajdź pełny tekst źródłaCzęści książek na temat "Polymers-applications"
Pittman, Charles U., i Charles E. Carraher. "Applications of Organometallic Polymers". W Applications of Polymers, 113–24. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5448-2_15.
Pełny tekst źródłaLange, Wendy. "Polymers in Automobile Applications". W Plastics and the Environment, 727–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471721557.ch17.
Pełny tekst źródłaGanachari, Sharanabasava V. "Polymers for Energy Applications". W Handbook of Ecomaterials, 1–17. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-48281-1_194-1.
Pełny tekst źródłaJoy, Nidhin, Geethy P. Gopalan, Joby Eldho i Raju Francis. "Conducting Polymers: Biomedical Applications". W Biomedical Applications of Polymeric Materials and Composites, 37–89. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527690916.ch3.
Pełny tekst źródłaGEBELEIN, CHARLES G. "Medical Applications of Polymers". W ACS Symposium Series, 535–56. Washington, D.C.: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0285.ch023.
Pełny tekst źródłaKulshrestha, Ankur S., i Anil Mahapatro. "Polymers for Biomedical Applications". W ACS Symposium Series, 1–7. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0977.ch001.
Pełny tekst źródłaGanachari, Sharanabasava V. "Polymers for Energy Applications". W Handbook of Ecomaterials, 3011–27. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-68255-6_194.
Pełny tekst źródłaInzelt, György. "Applications of Conducting Polymers". W Monographs in Electrochemistry, 245–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27621-7_7.
Pełny tekst źródłaArunprasath, K., M. Vijayakumar, Pon Janani Sugumaran, P. Amuthakkannan, V. Manikandan i V. Arumugaprabu. "Polymers for structural applications". W Materials for Lightweight Constructions, 39–60. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003252108-3.
Pełny tekst źródłaSeymour, Raymond B. "Conductive Polymers". W Applications of Polymers, 69–71. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5448-2_11.
Pełny tekst źródłaStreszczenia konferencji na temat "Polymers-applications"
Poga, Constantina, i Robert Andrew Norwood. "Reliable polymers for OADM applications". W Organic Thin Films. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/otf.1999.suc2.
Pełny tekst źródłaRyles, R. G., i J. V. Cicchiello. "New Polymers for EOR Applications". W SPE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers, 1986. http://dx.doi.org/10.2118/14947-ms.
Pełny tekst źródłaLippert, Thomas, Marc Hauer, Claude R. Phipps i Alexander J. Wokaun. "Polymers designed for laser applications: fundamentals and applications". W International Symposium on High-Power Laser Ablation 2002, redaktor Claude R. Phipps. SPIE, 2002. http://dx.doi.org/10.1117/12.482044.
Pełny tekst źródłaPawlowski, Kristin, Tyler St.Clair, Amber McReynolds, Cheol Park, Zoubeida Ounaies, Emilie Siochi i Joycelyn Harrison. "Electrospun Electroactive Polymers for Actuator Applications". W 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-1768.
Pełny tekst źródłaSinyukov, Alexander M., Megan R. Leahy i L. Michael Hayden. "Electro-optic polymers for THz applications". W Optics East, redaktorzy M. Saif Islam i Achyut K. Dutta. SPIE, 2004. http://dx.doi.org/10.1117/12.573839.
Pełny tekst źródłaBauer, F. "High pressure applications of ferroelectric polymers". W High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46161.
Pełny tekst źródłaFoshee, James J., Suning Tang, Jennifer K. Colegrove i Kevin J. Zhang. "Photonic polymers and their optoelectronic applications". W Integrated Optoelectronics Devices, redaktorzy Louay A. Eldada, Andrew R. Pirich, Paul L. Repak, Ray T. Chen i Joseph C. Chon. SPIE, 2003. http://dx.doi.org/10.1117/12.479789.
Pełny tekst źródłaKuhn, H. H., A. D. Child i W. C. Kimbrell. "Toward real applications of conductive polymers". W International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835662.
Pełny tekst źródłaChipara, Mircea, Jeffrey Zaleski, Bogdan Dragnea, Emma Shansky, Tiberiu-Dan Onuta i Magdalena Dorina Chipara. "Self-Healing Polymers for Space Applications". W 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
14th AIAA/ASME/AHS Adaptive Structures Conference
7th. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1946.
MEADOR, MARY, JAMES GAIER, BRIAN GOOD, G. SHARP i MICHAEL MEADOR. "Electrically conducting polymers for aerospace applications". W Conference on Advanced SEI Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-3432.
Pełny tekst źródłaRaporty organizacyjne na temat "Polymers-applications"
Gottesfeld, S. Conducting polymers: Synthesis and industrial applications. Office of Scientific and Technical Information (OSTI), kwiecień 1997. http://dx.doi.org/10.2172/494121.
Pełny tekst źródłaGottesfeld, S. Conducting polymers: Synthesis and industrial applications. Office of Scientific and Technical Information (OSTI), maj 1995. http://dx.doi.org/10.2172/105129.
Pełny tekst źródłaZhang, Qiming. Electroactive Polymers for Smart Skin Applications. Fort Belvoir, VA: Defense Technical Information Center, listopad 2001. http://dx.doi.org/10.21236/ada390644.
Pełny tekst źródłaZhang, Qiming. Electroactive Polymers for Smart Skin Applications. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2000. http://dx.doi.org/10.21236/ada378481.
Pełny tekst źródłaMather, Patrick T. New Polymers and Processes for Space Applications. Fort Belvoir, VA: Defense Technical Information Center, listopad 2003. http://dx.doi.org/10.21236/ada418326.
Pełny tekst źródłaGurchinoff, Stephen, Duane Fish i Brian Stern. High Performance Polymers for Small Engine Applications. Warrendale, PA: SAE International, październik 2013. http://dx.doi.org/10.4271/2013-32-9012.
Pełny tekst źródłaOrlicki, Joshua A., Xianyan Wang, Matthew S. Bratcher, Robert E. Jensen, Lynne A. Samuelson i Steven H. McKnight. Modified Hyperbranched Polymers for Fluorescence Sensing Applications. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2012. http://dx.doi.org/10.21236/ada568734.
Pełny tekst źródłaCzanderna, A. W. Polymers as advanced materials for desiccant applications. Office of Scientific and Technical Information (OSTI), grudzień 1990. http://dx.doi.org/10.2172/5774745.
Pełny tekst źródłaCzanderna, A. W. Polymers as Advanced Materials for Desiccant Applications: 1987. Office of Scientific and Technical Information (OSTI), grudzień 1988. http://dx.doi.org/10.2172/913314.
Pełny tekst źródłaCzanderna, A. W., i H. H. Neidlinger. Polymers as advanced materials for desiccant applications, 1988. Office of Scientific and Technical Information (OSTI), wrzesień 1990. http://dx.doi.org/10.2172/6822580.
Pełny tekst źródła