Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Polymerization induced phase separation.

Artykuły w czasopismach na temat „Polymerization induced phase separation”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Polymerization induced phase separation”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

LEE, J. C. "POLYMERIZATION-INDUCED PHASE SEPARATION: INTERMEDIATE DYNAMICS". International Journal of Modern Physics C 11, nr 02 (marzec 2000): 347–58. http://dx.doi.org/10.1142/s0129183100000328.

Pełny tekst źródła
Streszczenie:
When phase separation is induced by polymerizating monomers in a mixture of monomers and nonreacting molecules, the dynamics is different depending on the time scale of polymerization τpl and the time scale of phase separation τps. Previous studies have explored the dynamic regimes where τpl ≪ τps and that where τpl ≫ τps. In the former, a spanning gel emerges before the phase separation and the phase separation is driven largely by activation. In the latter, phase separation occurs first between polymers and nonbonding molecules and then the polymers turn into a gel, and therefore the driving mechanism is the same as in the usual liquid–liquid demixing processes. Using Molecular Dynamics simulations, we explore in this paper the intermediate dynamic regime where the two time scales are comparable. When the polymerization is done by means of the thermal condensation reaction, we observe the expected crossover, one limit behavior at early times and then the other at late times. When the polymerization is done by means of the radical addition reaction, the results suggest that the driving mechanism changes more than once.
Style APA, Harvard, Vancouver, ISO itp.
2

Lee, J. C. "Polymerization-induced phase separation". Physical Review E 60, nr 2 (1.08.1999): 1930–35. http://dx.doi.org/10.1103/physreve.60.1930.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kuboyama, Keiichi. "Polymer Blend ―Polymerization-induced Phase Separation―". Seikei-Kakou 30, nr 8 (20.07.2018): 419–23. http://dx.doi.org/10.4325/seikeikakou.30.419.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Shu-Hsia Chen i Wei-Jou Chen. "Kinetics of polymerization-induced phase separation". Physica A: Statistical Mechanics and its Applications 221, nr 1-3 (listopad 1995): 216–22. http://dx.doi.org/10.1016/0378-4371(95)00245-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Boots, H. M. J., J. G. Kloosterboer, C. Serbutoviez i F. J. Touwslager. "Polymerization-Induced Phase Separation. 1. Conversion−Phase Diagrams". Macromolecules 29, nr 24 (styczeń 1996): 7683–89. http://dx.doi.org/10.1021/ma960292h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Zaremski, Mikhail Yu, Elena Yu Kozhunova, Sergey S. Abramchuk, Maria E. Glavatskaya i Alexander V. Chertovich. "Polymerization-induced phase separation in gradient copolymers". Mendeleev Communications 31, nr 2 (marzec 2021): 277–79. http://dx.doi.org/10.1016/j.mencom.2021.03.045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Chan, Philip K., i Alejandro D. Rey. "Polymerization-Induced Phase Separation. 2. Morphological Analysis". Macromolecules 30, nr 7 (kwiecień 1997): 2135–43. http://dx.doi.org/10.1021/ma961078w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Yue, Jun, Honglei Wang, Qian Zhou i Pei Zhao. "Reaction-Induced Phase Separation and Morphology Evolution of Benzoxazine/Epoxy/Imidazole Ternary Blends". Polymers 13, nr 17 (31.08.2021): 2945. http://dx.doi.org/10.3390/polym13172945.

Pełny tekst źródła
Streszczenie:
Introducing multiphase structures into benzoxazine (BOZ)/epoxy resins (ER) blends via reaction-induced phase separation has proved to be promising strategy for improving their toughness. However, due to the limited contrast between two phases, little information is known about the phase morphological evolutions, a fundamental but vital issue to rational design and preparation of blends with different phase morphologies in a controllable manner. Here we addressed this problem by amplifying the difference of polymerization activity (PA) between BOZ and ER by synthesizing a low reactive phenol-3,3-diethyl-4,4′-diaminodiphenyl methane based benzoxazine (MOEA-BOZ) monomer. Results indicated that the PA of ER was higher than that of BOZ. The use of less reactive MOEA-BOZs significantly enlarged their PA difference with ER, and thus increased the extent of phase separation and improved the phase contrast. Phase morphologies varied with the content of ER. As for the phase morphological evolution, a rapid phase separation could occur in the initial homogeneous blends with the polymerization of ER, and the phase morphology gradually evolved with the increase in ER conversion until the ER was used up. The polymerization of ER is not only the driving-force for the phase separation, but also the main factor influencing the phase morphologies.
Style APA, Harvard, Vancouver, ISO itp.
9

Sicher, Alba, Rabea Ganz, Andreas Menzel, Daniel Messmer, Guido Panzarasa, Maria Feofilova, Richard O. Prum i in. "Structural color from solid-state polymerization-induced phase separation". Soft Matter 17, nr 23 (2021): 5772–79. http://dx.doi.org/10.1039/d1sm00210d.

Pełny tekst źródła
Streszczenie:
Inspired by living organisms that exploit phase separation to assemble structurally colored materials from macromolecules, we show that solid-state polymerization-induced phase separation can produce stable structures at optical length scales.
Style APA, Harvard, Vancouver, ISO itp.
10

Okada, Mamoru, i Toshiki Sakaguchi. "Thermal-History Dependence of Polymerization-Induced Phase Separation". Macromolecules 32, nr 12 (czerwiec 1999): 4154–56. http://dx.doi.org/10.1021/ma981744o.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

OKADA, Mamoru. "Morphological Structures Formed in Polymerization Induced Phase Separation." Kobunshi 44, nr 11 (1995): 748–49. http://dx.doi.org/10.1295/kobunshi.44.748.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Zhu, Yang-Ming. "Monte Carlo simulation of polymerization-induced phase separation". Physical Review E 54, nr 2 (1.08.1996): 1645–51. http://dx.doi.org/10.1103/physreve.54.1645.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Okada, M. "Dynamics of phase separation induced by radical polymerization". Macromolecular Symposia 160, nr 1 (październik 2000): 27–34. http://dx.doi.org/10.1002/1521-3900(200010)160:1<27::aid-masy27>3.0.co;2-n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Benmouna, Farida, Zohra Bouabdellah-Dembahri i Mustapha Benmouna. "Polymerization-induced Phase Separation: Phase Behavior Developments and Hydrodynamic Interaction". Journal of Macromolecular Science, Part B 52, nr 7 (21.12.2012): 998–1008. http://dx.doi.org/10.1080/00222348.2012.748617.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Tenhaeff, Wyatt. "(Invited) Multifunctional Lithium Ion Battery Separators through Polymerization-Induced Phase Separation". ECS Meeting Abstracts MA2022-02, nr 1 (9.10.2022): 28. http://dx.doi.org/10.1149/ma2022-02128mtgabs.

Pełny tekst źródła
Streszczenie:
In state-of-the-art lithium ion batteries, separators (microporous membranes) play a passive yet critical role – hosting liquid electrolyte and maintaining physical separation of the electrodes. However, as the demands on lithium ion batteries increase, with an emphasis on greater energy density, longevity (cycle/calendar life), and safety, engineering separators to take a on more active role in the cell (electro)chemistry is expected to be an important strategy. Myriad membrane materials and separator designs have been developed to impart additional functionality, for example, acid and/or transition metal scavenging, temperature responsiveness, enhanced thermal stability, increased ion dissociation, combustion suppression, and mechanical strength. In this talk, I will preset my group’s approach to additive manufacturing of next-generation lithium ion battery separators. Our approach is based on polymerization induced phase separation (PIPS), wherein polymerizable monomers (or prepolymer resins) are mixed with porogen. Through rapid, low-cost, readily scalable photopolymerization, the monomers are converted to a crosslinked polymer network, which results in the porogen becoming immiscible and phase separating through spinodal decomposition. By tuning the thermodynamics of the polymer-porogen mixture and photopolymerization kinetics, the porosity and pore size of the resulting polymeric phase can be tuned. We have shown that ethylene carbonate (EC) mixed with common acrylate monomers, such as 1,4-butanediol diacrylate, is an effective porogen. Most importantly because EC is an indispensable component in liquid electrolytes, it does not need to be extracted from the separator prior to incorporation into the electrochemical cell. By controlling the ratio of the 1,4-butanediol diacrylate (BDDA) monomer to EC, monolithic microporous membranes are readily prepared with 25 µm thickness and pore sizes and porosities ranging from 6.8 to 22nm and 15.4% to 38.54%, respectively. The optimal poly(1,4-butanediol diacrylate) (pBDDA) separator has a porosity of 38.5% and average pore size of 22 nm; uptakes 127% liquid electrolyte by mass, and has an ionic conductivity of 1.98 mS/cm, which is higher than that of Celgard 2500. Lithium ion battery half cells consisting of LiNi0.5Mn0.3Co0.2O2 cathodes and pBDDA separators were shown to undergo reversible charge/discharge cycling with an average discharge capacity of 142 mAh/g and a capacity retention of 98.4% over 100 cycles - comparable to cells using state-of-the-art separators. Furthermore, the pBDDA separators were shown to be thermally stable to 400°C, lack low temperature thermal transitions that can compromise cell safety, and exhibits no thermal shrinkage up to 150°C. I will also discuss my group’s efforts to engineer separators with additional functionality to improve cell performance under abuse conditions.
Style APA, Harvard, Vancouver, ISO itp.
16

Miura, Yoshiko, Hirokazu Seto, Makoto Shibuya i Yu Hoshino. "Biopolymer monolith for protein purification". Faraday Discussions 219 (2019): 154–67. http://dx.doi.org/10.1039/c9fd00018f.

Pełny tekst źródła
Streszczenie:
Porous glycopolymers, “glycomonoliths”, were prepared by radical polymerization based on polymerization-induced phase separation with an acrylamide derivative of α-mannose, acrylamide and cross-linker in order to investigate protein adsorption and separation.
Style APA, Harvard, Vancouver, ISO itp.
17

Zhang, Pei, Donald C. Sundberg i John G. Tsavalas. "Polymerization Induced Phase Separation in Composite Latex Particles during Seeded Emulsion Polymerization". Industrial & Engineering Chemistry Research 58, nr 46 (20.09.2019): 21118–29. http://dx.doi.org/10.1021/acs.iecr.9b02964.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Stevens, Mark J. "Simulation of polymerization induced phase separation in model thermosets". Journal of Chemical Physics 155, nr 5 (7.08.2021): 054905. http://dx.doi.org/10.1063/5.0061654.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Chan, Philip K., i Alejandro D. Rey. "Polymerization-Induced Phase Separation. 1. Droplet Size Selection Mechanism". Macromolecules 29, nr 27 (styczeń 1996): 8934–41. http://dx.doi.org/10.1021/ma960690k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Keizer, Henk M., Rint P. Sijbesma, Johan F. G. A. Jansen, George Pasternack i E. W. Meijer. "Polymerization-Induced Phase Separation Using Hydrogen-Bonded Supramolecular Polymers". Macromolecules 36, nr 15 (lipiec 2003): 5602–6. http://dx.doi.org/10.1021/ma034284u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Luo, Kaifu. "The morphology and dynamics of polymerization-induced phase separation". European Polymer Journal 42, nr 7 (lipiec 2006): 1499–505. http://dx.doi.org/10.1016/j.eurpolymj.2006.01.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Dubinsky, Stanislav, Alla Petukhova, Ilya Gourevich i Eugenia Kumacheva. "Hybrid porous material produced by polymerization-induced phase separation". Chemical Communications 46, nr 15 (2010): 2578. http://dx.doi.org/10.1039/b924373a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Chen, Wei-Jou, i Shu-Hsia Chen. "Scaling behavior of pinning in polymerization-induced phase separation". Physical Review E 52, nr 5 (1.11.1995): 5696–99. http://dx.doi.org/10.1103/physreve.52.5696.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Nakazawa, Hatsumi, Shinobu Fujinami, Miho Motoyama, Takao Ohta, Takeaki Araki i Hajime Tanaka. "POLYMERIZATION-INDUCED PHASE SEPARATION OF POLYMER-DISPERSED LIQUID CRYSTAL". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 366, nr 1 (sierpień 2001): 871–78. http://dx.doi.org/10.1080/10587250108024029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Williams, Roberto J. J., Cristina E. Hoppe, Ileana A. Zucchi, Hernán E. Romeo, Ignacio E. dell’Erba, María L. Gómez, Julieta Puig i Agustina B. Leonardi. "Self-assembly of nanoparticles employing polymerization-induced phase separation". Journal of Colloid and Interface Science 431 (październik 2014): 223–32. http://dx.doi.org/10.1016/j.jcis.2014.06.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Hamilton, Heather S. C., i Laura C. Bradley. "Probing the morphology evolution of chemically anisotropic colloids prepared by homopolymerization- and copolymerization-induced phase separation". Polymer Chemistry 11, nr 2 (2020): 230–35. http://dx.doi.org/10.1039/c9py01166h.

Pełny tekst źródła
Streszczenie:
Chemically anisotropic colloids prepared by polymerization-induced phase separation during seeded emulsion polymerization with non-crosslinked seeds reveals tunability in both surface and interior properties based on the morphology evolution.
Style APA, Harvard, Vancouver, ISO itp.
27

Jin, Jian-Min, Kanwall Parbhakar i Le H. Dao. "Effect of Polymerization Reactivity, Interfacial Strength, and Gravity on Polymerization-Induced Phase Separation". Macromolecules 28, nr 23 (listopad 1995): 7937–41. http://dx.doi.org/10.1021/ma00127a047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Yu, Yingfeng, Minghai Wang, Wenjun Gan, Qingsheng Tao i Shanjun Li. "Polymerization-Induced Viscoelastic Phase Separation in Polyethersulfone-Modified Epoxy Systems". Journal of Physical Chemistry B 108, nr 20 (maj 2004): 6208–15. http://dx.doi.org/10.1021/jp036628o.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Mimura, Koji, i Ken Sumiyoshi. "Polymerization-Induced Phase Separation in LC/Light-Curable Resin Mixture". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 330, nr 1 (1.08.1999): 23–28. http://dx.doi.org/10.1080/10587259908025572.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Kim, J. Y., C. H. Cho, P. Palffy-Muhoray i T. Kyu. "Polymerization-induced phase separation in a liquid-crystal-polymer mixture". Physical Review Letters 71, nr 14 (4.10.1993): 2232–35. http://dx.doi.org/10.1103/physrevlett.71.2232.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Kwok, Alan Y., Emma L. Prime, Greg G. Qiao i David H. Solomon. "Synthetic hydrogels 2. Polymerization induced phase separation in acrylamide systems". Polymer 44, nr 24 (listopad 2003): 7335–44. http://dx.doi.org/10.1016/j.polymer.2003.09.026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Ding, Yi, Qingqing Zhao, Lei Wang, Leilei Huang, Qizhou Liu, Xinhua Lu i Yuanli Cai. "Polymerization-Induced Self-Assembly Promoted by Liquid–Liquid Phase Separation". ACS Macro Letters 8, nr 8 (17.07.2019): 943–46. http://dx.doi.org/10.1021/acsmacrolett.9b00435.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Nakanishi, Kazuki, Tomohiko Amatani, Seiji Yano i Tetsuya Kodaira. "Multiscale Templating of Siloxane Gels via Polymerization-Induced Phase Separation†". Chemistry of Materials 20, nr 3 (luty 2008): 1108–15. http://dx.doi.org/10.1021/cm702486b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Kim, Bomi, Tae Yoon Jeon, You-Kwan Oh i Shin-Hyun Kim. "Microfluidic Production of Semipermeable Microcapsules by Polymerization-Induced Phase Separation". Langmuir 31, nr 22 (28.05.2015): 6027–34. http://dx.doi.org/10.1021/acs.langmuir.5b01129.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Schneider, Tod, Forrest Nicholson, Asad Khan, J. William Doane i L. C. Chien. "50.4: Flexible Encapsulated Cholesteric LCDs by Polymerization Induced Phase Separation". SID Symposium Digest of Technical Papers 36, nr 1 (2005): 1568. http://dx.doi.org/10.1889/1.2036311.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Lin, Jian-Cheng, i P. L. Taylor. "Polymerization-induced Phase Separation of a Liquid Crystal-Polymer Mixture". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 237, nr 1 (grudzień 1993): 25–31. http://dx.doi.org/10.1080/10587259308030120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Ma, Qing Lan, i Yuan Ming Huang. "Phase Separation in Polymer Dispersed Liquid Crystal Device". Materials Science Forum 663-665 (listopad 2010): 763–66. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.763.

Pełny tekst źródła
Streszczenie:
Polymer dispersed liquid crystal device was prepared by the method of polymerization induced phase separation. The phase separation in our PDLC device was characterized by a polarized optical microscope. Our results demonstrated that the phase-separated droplets in our PDLC device presented the four-brush radial, bipolar and axial configurations. Furthermore, these configurations were simulated by mathematica tool
Style APA, Harvard, Vancouver, ISO itp.
38

Shen, Gebin, Zhongnan Hu, Zhuoyu Liu, Ruiheng Wen, Xiaolin Tang i Yingfeng Yu. "Fabrication of a superhydrophilic epoxy resin surface via polymerization-induced viscoelastic phase separation". RSC Advances 6, nr 41 (2016): 34120–30. http://dx.doi.org/10.1039/c6ra03832h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Rong, Mingming, Shuanhong Ma, Peng Lin, Meirong Cai, Zijian Zheng i Feng Zhou. "Polymerization induced phase separation as a generalized methodology for multi-layered hydrogel tubes". Journal of Materials Chemistry B 7, nr 22 (2019): 3505–11. http://dx.doi.org/10.1039/c9tb00185a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Xu, Shunjian, Yufeng Luo, Wei Zhong, Zonghu Xiao, Yongping Luo, Hui Ou i Xing-Zhong Zhao. "Facile synthesis of gradient mesoporous carbon monolith based on polymerization-induced phase separation". Functional Materials Letters 07, nr 05 (26.08.2014): 1450055. http://dx.doi.org/10.1142/s1793604714500556.

Pełny tekst źródła
Streszczenie:
In this paper, a gradient mesoporous carbon (GMC) monolith derived from the mixtures of phenolic resin (PF) and ethylene glycol (EG) was prepared by a facile route based on polymerization-induced phase separation under temperature gradient (TG). A graded biphasic structure of PF-rich and EG-rich phases was first formed in preform under a TG, and then the preform was pyrolyzed to obtain the GMC monolith. The TG is mainly induced by the thermal resistance of the preferential phase separation layer at high temperature region. The pore structure of the monolith changes gradually along the TG direction. When the TG varies from 58°C to 29°C, the pore size, apparent porosity and specific surface area of the monolith range respectively from 18 nm to 83 nm, from 32% to 39% and from 140.5 m2/g to 515.3 m2/g. The gradient porous structure of the monolith is inherited from that of the preform, which depends on phase separation under TG in the resin mixtures. The pyrolysis mainly brings about the contraction of the pore size and wall thickness as well as the transformation of polymerized PF into glassy carbon.
Style APA, Harvard, Vancouver, ISO itp.
41

Guo, Xingzhong, Rui Wang, Huan Yu, Yang Zhu, Kazuki Nakanishi, Kazuyoshi Kanamori i Hui Yang. "Spontaneous preparation of hierarchically porous silica monoliths with uniform spherical mesopores confined in a well-defined macroporous framework". Dalton Transactions 44, nr 30 (2015): 13592–601. http://dx.doi.org/10.1039/c5dt01672j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Ghaffari, Shima, Philip K. Chan i Mehrab Mehrvar. "Long-Range Surface-Directed Polymerization-Induced Phase Separation: A Computational Study". Polymers 13, nr 2 (14.01.2021): 256. http://dx.doi.org/10.3390/polym13020256.

Pełny tekst źródła
Streszczenie:
The presence of a surface preferably attracting one component of a polymer mixture by the long-range van der Waals surface potential while the mixture undergoes phase separation by spinodal decomposition is called long-range surface-directed spinodal decomposition (SDSD). The morphology achieved under SDSD is an enrichment layer(s) close to the wall surface and a droplet-type structure in the bulk. In the current study of the long-range surface-directed polymerization-induced phase separation, the surface-directed spinodal decomposition of a monomer–solvent mixture undergoing self-condensation polymerization was theoretically simulated. The nonlinear Cahn–Hilliard and Flory–Huggins free energy theories were applied to investigate the phase separation phenomenon. The long-range surface potential led to the formation of a wetting layer on the surface. The thickness of the wetting layer was found proportional to time t*1/5 and surface potential parameter h11/5. A larger diffusion coefficient led to the formation of smaller droplets in the bulk and a thinner depletion layer, while it did not affect the thickness of the enrichment layer close to the wall. A temperature gradient imposed in the same direction of long-range surface potential led to the formation of a stripe morphology near the wall, while imposing it in the opposite direction of surface potential led to the formation of large particles at the high-temperature side, the opposite side of the interacting wall.
Style APA, Harvard, Vancouver, ISO itp.
43

Cheng, Haiming, Huafei Xue, Guangdong Zhao, Changqing Hong i Xinghong Zhang. "Preparation, characterization, and properties of graphene-based composite aerogels via in situ polymerization and three-dimensional self-assembly from graphene oxide solution". RSC Advances 6, nr 82 (2016): 78538–47. http://dx.doi.org/10.1039/c6ra08823f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Wang, Ye, Chao Li, Lei Ma, Xiyu Wang, Kai Wang, Xinhua Lu i Yuanli Cai. "Interfacial Liquid–Liquid Phase Separation-Driven Polymerization-Induced Electrostatic Self-Assembly". Macromolecules 54, nr 12 (8.06.2021): 5577–85. http://dx.doi.org/10.1021/acs.macromol.1c00756.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Oh, J., i A. D. Rey. "Computational simulation of polymerization-induced phase separation under a temperature gradient". Computational and Theoretical Polymer Science 11, nr 3 (czerwiec 2001): 205–17. http://dx.doi.org/10.1016/s1089-3156(00)00013-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Kaji, Hironori, Kazuki Nakanishi i Naohiro Soga. "Polymerization-induced phase separation in silica sol-gel systems containing formamide". Journal of Sol-Gel Science and Technology 1, nr 1 (1993): 35–46. http://dx.doi.org/10.1007/bf00486427.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Tang, Yong, Kejian Wu, Shudong Yu, Junchi Chen, Xinrui Ding, Longshi Rao i Zongtao Li. "Bioinspired high-scattering polymer films fabricated by polymerization-induced phase separation". Optics Letters 45, nr 10 (15.05.2020): 2918. http://dx.doi.org/10.1364/ol.390639.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Wang, Xin, Mamoru Okada, Yuichiro Matsushita, Hidemitsu Furukawa i Charles C. Han. "Crystal-like Array Formation in Phase Separation Induced by Radical Polymerization". Macromolecules 38, nr 16 (sierpień 2005): 7127–33. http://dx.doi.org/10.1021/ma050896y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Yi, Xiaolin, Lei Kong, Xia Dong, Xiaobiao Zuo, Xiao Kuang, Zhihai Feng i Dujin Wang. "Polymerization induced viscoelastic phase separation of porous phenolic resin from solution". Polymer International 65, nr 9 (18.05.2016): 1031–38. http://dx.doi.org/10.1002/pi.5147.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Oh, Junsuk, i Alejandro D. Rey. "Theory and simulation of polymerization-induced phase separation in polymeric media". Macromolecular Theory and Simulations 9, nr 8 (1.11.2000): 641–60. http://dx.doi.org/10.1002/1521-3919(20001101)9:8<641::aid-mats641>3.0.co;2-e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii