Artykuły w czasopismach na temat „Polymeric Solar Cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Polymeric Solar Cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Mdluli, Siyabonga B., Morongwa E. Ramoroka, Sodiq T. Yussuf, Kwena D. Modibane, Vivian S. John-Denk i Emmanuel I. Iwuoha. "π-Conjugated Polymers and Their Application in Organic and Hybrid Organic-Silicon Solar Cells". Polymers 14, nr 4 (13.02.2022): 716. http://dx.doi.org/10.3390/polym14040716.
Pełny tekst źródłaPalewicz, Marcin, i Agnieszka Iwan. "Photovoltaic Phenomenon in Polymeric Thin Layer Solar Cells". Current Physical Chemistry 1, nr 1 (1.01.2011): 27–54. http://dx.doi.org/10.2174/1877946811101010027.
Pełny tekst źródłaPalewicz, Marcin, i Agnieszka Iwan. "Photovoltaic Phenomenon in Polymeric Thin Layer Solar Cells". Current Physical Chemistrye 1, nr 1 (1.01.2011): 27–54. http://dx.doi.org/10.2174/1877947611101010027.
Pełny tekst źródłaLanzi, Massimiliano, Elisabetta Salatelli, Tiziana Benelli, Daniele Caretti, Loris Giorgini i Francesco Paolo Di-Nicola. "A regioregular polythiophene-fullerene for polymeric solar cells". Journal of Applied Polymer Science 132, nr 25 (10.03.2015): n/a. http://dx.doi.org/10.1002/app.42121.
Pełny tekst źródłaSzindler, Magdalena M. "Polymeric Electrolyte Thin Film for Dye Sensitized Solar Cells Application". Solid State Phenomena 293 (lipiec 2019): 73–81. http://dx.doi.org/10.4028/www.scientific.net/ssp.293.73.
Pełny tekst źródłaVlachopoulos, Nick, Michael Grätzel i Anders Hagfeldt. "Solid-state dye-sensitized solar cells using polymeric hole conductors". RSC Advances 11, nr 62 (2021): 39570–81. http://dx.doi.org/10.1039/d1ra05911d.
Pełny tekst źródłaSeco, Cristina Rodríguez, Anton Vidal-Ferran, Rajneesh Misra, Ganesh D. Sharma i Emilio Palomares. "Efficient Non-polymeric Heterojunctions in Ternary Organic Solar Cells". ACS Applied Energy Materials 1, nr 8 (6.07.2018): 4203–10. http://dx.doi.org/10.1021/acsaem.8b00828.
Pełny tekst źródłaHahn, T., C. Saller, M. Weigl, I. Bauer, T. Unger, A. Köhler i P. Strohriegl. "Organic solar cells with crosslinked polymeric exciton blocking layer". physica status solidi (a) 212, nr 10 (10.06.2015): 2162–68. http://dx.doi.org/10.1002/pssa.201532040.
Pełny tekst źródłaUranbileg, Nergui, Chenglin Gao, Chunming Yang, Xichang Bao, Liangliang Han i Renqiang Yang. "Amorphous electron donors with controllable morphology for non-fullerene polymer solar cells". Journal of Materials Chemistry C 7, nr 35 (2019): 10881–90. http://dx.doi.org/10.1039/c9tc02663k.
Pełny tekst źródłaLim, Kyung-Geun, Soyeong Ahn, Young-Hoon Kim, Yabing Qi i Tae-Woo Lee. "Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic–inorganic hybrid perovskite solar cells". Energy & Environmental Science 9, nr 3 (2016): 932–39. http://dx.doi.org/10.1039/c5ee03560k.
Pełny tekst źródłaLiu, Peng, James M. Gardner i Lars Kloo. "Solution processable, cross-linked sulfur polymers as solid electrolytes in dye-sensitized solar cells". Chemical Communications 51, nr 78 (2015): 14660–62. http://dx.doi.org/10.1039/c5cc04822b.
Pełny tekst źródłaGuo, Yunlong, Wataru Sato, Kento Inoue, Weifeng Zhang, Gui Yu i Eiichi Nakamura. "n-Type doping for efficient polymeric electron-transporting layers in perovskite solar cells". Journal of Materials Chemistry A 4, nr 48 (2016): 18852–56. http://dx.doi.org/10.1039/c6ta08526a.
Pełny tekst źródłaThao, Tran Thi, Do Ngoc Chung, Nguyen Nang Dinh i Vo Van Truong. "Photoluminescence Quenching of Nanocomposite Materials Used for Organic Solar Cells". Communications in Physics 24, nr 3S1 (7.11.2014): 22–28. http://dx.doi.org/10.15625/0868-3166/24/3s1/5073.
Pełny tekst źródłaChen, Lung-Chien. "Organic and Polymeric Thin-Film Materials for Solar Cells: A New Open Special Issue in Materials". Materials 15, nr 19 (26.09.2022): 6664. http://dx.doi.org/10.3390/ma15196664.
Pełny tekst źródłaLiu, Chang, Kai Wang, Xiong Gong i Alan J. Heeger. "Low bandgap semiconducting polymers for polymeric photovoltaics". Chemical Society Reviews 45, nr 17 (2016): 4825–46. http://dx.doi.org/10.1039/c5cs00650c.
Pełny tekst źródłaHennache, A. "Polymeric Solar Cells Efficiency Increase Using Doped Conjugated Polymer Nanoparticles". British Journal of Applied Science & Technology 4, nr 4 (10.01.2014): 604–16. http://dx.doi.org/10.9734/bjast/2014/4249.
Pełny tekst źródłaYe, Huaiying, Wen Li i Weishi Li. "Progress in Polymeric Electron-Donating Materials for Organic Solar Cells". Chinese Journal of Organic Chemistry 32, nr 2 (2012): 266. http://dx.doi.org/10.6023/cjoc1104062.
Pełny tekst źródłaZheng, Lingling, Yingzhuang Ma, Lixin Xiao, Fengyan Zhang, Yuanhao Wang i Hongxing Yang. "Water-Soluble Polymeric Interfacial Material for Planar Perovskite Solar Cells". ACS Applied Materials & Interfaces 9, nr 16 (11.04.2017): 14129–35. http://dx.doi.org/10.1021/acsami.7b00576.
Pełny tekst źródłaLiu, Feng, Zachariah A. Page, Volodimyr V. Duzhko, Thomas P. Russell i Todd Emrick. "Conjugated Polymeric Zwitterions as Efficient Interlayers in Organic Solar Cells". Advanced Materials 25, nr 47 (18.09.2013): 6868–73. http://dx.doi.org/10.1002/adma.201302477.
Pełny tekst źródłaMa’alinia, A., H. Asgari Moghaddam, E. Nouri i M. R. Mohammadi. "Long-term stability of dye-sensitized solar cells using a facile gel polymer electrolyte". New Journal of Chemistry 42, nr 16 (2018): 13256–62. http://dx.doi.org/10.1039/c8nj02157k.
Pełny tekst źródłaAkbar, Zico Alaia, Jae-Seon Lee, Jinhyeon Kang, Han-Ik Joh, Sungho Lee i Sung-Yeon Jang. "FTO-free counter electrodes for dye-sensitized solar cells using carbon nanosheets synthesised from a polymeric carbon source". Phys. Chem. Chem. Phys. 16, nr 33 (2014): 17595–602. http://dx.doi.org/10.1039/c4cp01913j.
Pełny tekst źródłaPedroso Silva Santos, Bianca, Arthur de Castro Ribeiro, Jose Geraldo de Melo Furtado i Maria de Fátima Vieira Marques. "Synthesis and Characterization of Conductive Terpolymer for Solar Cell Application". Journal of Aerospace Technology and Management, nr 1 (21.01.2020): 41–44. http://dx.doi.org/10.5028/jatm.etmq.07.
Pełny tekst źródłaTsai, Chang-Hung, Nan Li, Chia-Chen Lee, Hung-Chin Wu, Zonglong Zhu, Liduo Wang, Wen-Chang Chen, He Yan i Chu-Chen Chueh. "Efficient and UV-stable perovskite solar cells enabled by side chain-engineered polymeric hole-transporting layers". Journal of Materials Chemistry A 6, nr 27 (2018): 12999–3004. http://dx.doi.org/10.1039/c8ta03608j.
Pełny tekst źródłaPan, Xuexue, Wentao Xiong, Tao Liu, Xiaobo Sun, Lijun Huo, Donghui Wei, Mingming Yu, Minfang Han i Yanming Sun. "Influence of 2,2-bithiophene and thieno[3,2-b] thiophene units on the photovoltaic performance of benzodithiophene-based wide-bandgap polymers". Journal of Materials Chemistry C 5, nr 18 (2017): 4471–79. http://dx.doi.org/10.1039/c7tc00720e.
Pełny tekst źródłaLee, You-Sun, Ji Young Lee, Su-Mi Bang, Bogyu Lim, Jaechol Lee i Seok-In Na. "A feasible random copolymer approach for high-efficiency polymeric photovoltaic cells". Journal of Materials Chemistry A 4, nr 29 (2016): 11439–45. http://dx.doi.org/10.1039/c6ta04920f.
Pełny tekst źródłaWang, Shuangjie, Bowen Yang, Jian Han, Ziwei He, Tongtong Li, Qi Cao, Jiabao Yang i in. "Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells". Energy & Environmental Science 13, nr 12 (2020): 5068–79. http://dx.doi.org/10.1039/d0ee02043e.
Pełny tekst źródłaAzovskyi, V. A., V. M. Yashchuk, G. V. Bulavko i A. A. Ishchenko. "Some Problems in Designing a Luminescence Converter for Si Solar Cells". Ukrainian Journal of Physics 65, nr 6 (9.06.2020): 476. http://dx.doi.org/10.15407/ujpe65.6.476.
Pełny tekst źródłaAizawa, Naoya, Canek Fuentes-Hernandez, Vladimir A. Kolesov, Talha M. Khan, Junji Kido i Bernard Kippelen. "Simultaneous cross-linking and p-doping of a polymeric semiconductor film by immersion into a phosphomolybdic acid solution for use in organic solar cells". Chemical Communications 52, nr 19 (2016): 3825–27. http://dx.doi.org/10.1039/c6cc01022a.
Pełny tekst źródłaZhang, Chun-Hui, Fengyuan Lin, Wei Huang, Jingming Xin, Jiang Wang, Zhichao Lin, Wei Ma, Tingbin Yang, Jiangbin Xia i Yongye Liang. "Methyl functionalization on conjugated side chains for polymer solar cells processed from non-chlorinated solvents". Journal of Materials Chemistry C 8, nr 33 (2020): 11532–39. http://dx.doi.org/10.1039/d0tc02032j.
Pełny tekst źródłaChen, Weikang, Deyao Jiang, Renai Chen, Sheng Li i Thomas George. "Intrinsic Delocalization during the Decay of Excitons in Polymeric Solar Cells". Polymers 8, nr 12 (30.11.2016): 414. http://dx.doi.org/10.3390/polym8120414.
Pełny tekst źródłaJeong, Jaehoon, Eunjoo Kwak, Jooyeok Seo, Hwajeong Kim i Youngkyoo Kim. "Hybrid Solar Cells With Polymeric Bulk Heterojunction Layers Containing Inorganic Nanoparticles". IEEE Journal of Photovoltaics 6, nr 4 (lipiec 2016): 924–29. http://dx.doi.org/10.1109/jphotov.2016.2553785.
Pełny tekst źródłaChangneng, Zhang, Wang Mingtai, Li Fang, Kong Mingguang, Guo Li, Xu Weiwei, Zhu Xiaoguang i Wang Kongjia. "A Polymeric/Inorganic Nanocomposite for Solid-State Dye-Sensitized Solar Cells". Plasma Science and Technology 7, nr 4 (sierpień 2005): 2962–64. http://dx.doi.org/10.1088/1009-0630/7/4/021.
Pełny tekst źródłaKumar, Rajesh, Ajendra K. Sharma, Virinder S. Parmar, Arthur C. Watterson, Kethinni G. Chittibabu, Jayant Kumar i Lynne A. Samuelson. "Flexible, Dye-Sensitized Nanocrystalline Solar Cells Employing Biocatalytically Synthesized Polymeric Electrolytes". Chemistry of Materials 16, nr 23 (listopad 2004): 4841–46. http://dx.doi.org/10.1021/cm0496568.
Pełny tekst źródłaChandrasekharan, Ajeesh, Hui Jin, Martin Stolterfoht, Eliot Gann, Christopher R. McNeill, Mike Hambsch i Paul L. Burn. "9,9′-Bifluorenylidene-diketopyrrolopyrrole donors for non-polymeric solution processed solar cells". Synthetic Metals 250 (kwiecień 2019): 79–87. http://dx.doi.org/10.1016/j.synthmet.2019.02.015.
Pełny tekst źródłaA., Venkateswararao, Shun-Wei Liu i Ken-Tsung Wong. "Organic polymeric and small molecular electron acceptors for organic solar cells". Materials Science and Engineering: R: Reports 124 (luty 2018): 1–57. http://dx.doi.org/10.1016/j.mser.2018.01.001.
Pełny tekst źródłaYusli, M. N., T. Way Yun i K. Sulaiman. "Solvent effect on the thin film formation of polymeric solar cells". Materials Letters 63, nr 30 (grudzień 2009): 2691–94. http://dx.doi.org/10.1016/j.matlet.2009.09.044.
Pełny tekst źródłaZhou, Yinhua, Canek Fuentes-Hernandez, Jae Won Shim, Talha M. Khan i Bernard Kippelen. "High performance polymeric charge recombination layer for organic tandem solar cells". Energy & Environmental Science 5, nr 12 (2012): 9827. http://dx.doi.org/10.1039/c2ee23294d.
Pełny tekst źródłaDang, Minh Trung, Guillaume Wantz, Habiba Bejbouji, Mathieu Urien, Olivier J. Dautel, Laurence Vignau i Lionel Hirsch. "Polymeric solar cells based on P3HT:PCBM: Role of the casting solvent". Solar Energy Materials and Solar Cells 95, nr 12 (grudzień 2011): 3408–18. http://dx.doi.org/10.1016/j.solmat.2011.07.039.
Pełny tekst źródłaKang, Jin Soo, Jin Kim, Jae-Yup Kim, Myeong Jae Lee, Jiho Kang, Yoon Jun Son, Juwon Jeong, Sun Ha Park, Min Jae Ko i Yung-Eun Sung. "Highly Efficient Bifacial Dye-Sensitized Solar Cells Employing Polymeric Counter Electrodes". ACS Applied Materials & Interfaces 10, nr 10 (27.02.2018): 8611–20. http://dx.doi.org/10.1021/acsami.7b17815.
Pełny tekst źródłaRadbeh, Roshanak, Emilien Parbaile, Mohamad Chakaroun, Bernard Ratier, Matt Aldissi i André Moliton. "Enhanced efficiency of polymeric solar cells via alignment of carbon nanotubes". Polymer International 59, nr 11 (13.09.2010): 1514–19. http://dx.doi.org/10.1002/pi.2916.
Pełny tekst źródłaMarin, Veronica, Elisabeth Holder i Ulrich S. Schubert. "Polymeric ruthenium bipyridine complexes: New potential materials for polymer solar cells". Journal of Polymer Science Part A: Polymer Chemistry 42, nr 2 (2003): 374–85. http://dx.doi.org/10.1002/pola.11024.
Pełny tekst źródłaUlbricht, R., X. Jiang, S. Lee, K. Inoue, M. Zhang, S. Fang, R. Baughman i A. Zakhidov. "Polymeric solar cells with oriented and strong transparent carbon nanotube anode". physica status solidi (b) 243, nr 13 (listopad 2006): 3528–32. http://dx.doi.org/10.1002/pssb.200669181.
Pełny tekst źródłaVölker, Sebastian F., Shinobu Uemura, Moritz Limpinsel, Markus Mingebach, Carsten Deibel, Vladimir Dyakonov i Christoph Lambert. "Polymeric Squaraine Dyes as Electron Donors in Bulk Heterojunction Solar Cells". Macromolecular Chemistry and Physics 211, nr 10 (11.05.2010): 1098–108. http://dx.doi.org/10.1002/macp.200900670.
Pełny tekst źródłaKaienburg, Pascal, Benjamin Klingebiel i Thomas Kirchartz. "Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency". Beilstein Journal of Nanotechnology 9 (8.08.2018): 2114–24. http://dx.doi.org/10.3762/bjnano.9.200.
Pełny tekst źródłaMatoetoe, Mangaka. "A Review of Dye Incorporated Conducting Polymers Application as Sensors and in Solar Cells". Materials Science Forum 657 (lipiec 2010): 208–30. http://dx.doi.org/10.4028/www.scientific.net/msf.657.208.
Pełny tekst źródłaKim, Guan-Woo, Gyeongho Kang, Jinseck Kim, Gang-Young Lee, Hong Il Kim, Limok Pyeon, Jaechol Lee i Taiho Park. "Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells". Energy & Environmental Science 9, nr 7 (2016): 2326–33. http://dx.doi.org/10.1039/c6ee00709k.
Pełny tekst źródłaGnida, Paweł, Muhammad Faisal Amin, Agnieszka Katarzyna Pająk i Bożena Jarząbek. "Polymers in High-Efficiency Solar Cells: The Latest Reports". Polymers 14, nr 10 (11.05.2022): 1946. http://dx.doi.org/10.3390/polym14101946.
Pełny tekst źródłaFuentes Pineda, Rosinda, Benjamin R. M. Lake, Joel Troughton, Irene Sanchez-Molina, Oleg Chepelin, Saif A. Haque, Trystan Watson, Michael P. Shaver i Neil Robertson. "Correction: Polymeric hole-transport materials with side-chain redox-active groups for perovskite solar cells with good reproducibility". Physical Chemistry Chemical Physics 20, nr 46 (2018): 29567. http://dx.doi.org/10.1039/c8cp91904f.
Pełny tekst źródłaCao, Yang, Yunlong Li, Thomas Morrissey, Brian Lam, Brian O. Patrick, David J. Dvorak, Zhicheng Xia, Timothy L. Kelly i Curtis P. Berlinguette. "Dopant-free molecular hole transport material that mediates a 20% power conversion efficiency in a perovskite solar cell". Energy & Environmental Science 12, nr 12 (2019): 3502–7. http://dx.doi.org/10.1039/c9ee02983d.
Pełny tekst źródłaHeo, Jin Hyuck, Muhammad Jahandar, Sang-Jin Moon, Chang Eun Song i Sang Hyuk Im. "Inverted CH3NH3PbI3 perovskite hybrid solar cells with improved flexibility by introducing a polymeric electron conductor". Journal of Materials Chemistry C 5, nr 11 (2017): 2883–91. http://dx.doi.org/10.1039/c6tc05081f.
Pełny tekst źródła