Gotowa bibliografia na temat „Polymeric Solar Cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Polymeric Solar Cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Polymeric Solar Cells"
Mdluli, Siyabonga B., Morongwa E. Ramoroka, Sodiq T. Yussuf, Kwena D. Modibane, Vivian S. John-Denk i Emmanuel I. Iwuoha. "π-Conjugated Polymers and Their Application in Organic and Hybrid Organic-Silicon Solar Cells". Polymers 14, nr 4 (13.02.2022): 716. http://dx.doi.org/10.3390/polym14040716.
Pełny tekst źródłaPalewicz, Marcin, i Agnieszka Iwan. "Photovoltaic Phenomenon in Polymeric Thin Layer Solar Cells". Current Physical Chemistry 1, nr 1 (1.01.2011): 27–54. http://dx.doi.org/10.2174/1877946811101010027.
Pełny tekst źródłaPalewicz, Marcin, i Agnieszka Iwan. "Photovoltaic Phenomenon in Polymeric Thin Layer Solar Cells". Current Physical Chemistrye 1, nr 1 (1.01.2011): 27–54. http://dx.doi.org/10.2174/1877947611101010027.
Pełny tekst źródłaLanzi, Massimiliano, Elisabetta Salatelli, Tiziana Benelli, Daniele Caretti, Loris Giorgini i Francesco Paolo Di-Nicola. "A regioregular polythiophene-fullerene for polymeric solar cells". Journal of Applied Polymer Science 132, nr 25 (10.03.2015): n/a. http://dx.doi.org/10.1002/app.42121.
Pełny tekst źródłaSzindler, Magdalena M. "Polymeric Electrolyte Thin Film for Dye Sensitized Solar Cells Application". Solid State Phenomena 293 (lipiec 2019): 73–81. http://dx.doi.org/10.4028/www.scientific.net/ssp.293.73.
Pełny tekst źródłaVlachopoulos, Nick, Michael Grätzel i Anders Hagfeldt. "Solid-state dye-sensitized solar cells using polymeric hole conductors". RSC Advances 11, nr 62 (2021): 39570–81. http://dx.doi.org/10.1039/d1ra05911d.
Pełny tekst źródłaSeco, Cristina Rodríguez, Anton Vidal-Ferran, Rajneesh Misra, Ganesh D. Sharma i Emilio Palomares. "Efficient Non-polymeric Heterojunctions in Ternary Organic Solar Cells". ACS Applied Energy Materials 1, nr 8 (6.07.2018): 4203–10. http://dx.doi.org/10.1021/acsaem.8b00828.
Pełny tekst źródłaHahn, T., C. Saller, M. Weigl, I. Bauer, T. Unger, A. Köhler i P. Strohriegl. "Organic solar cells with crosslinked polymeric exciton blocking layer". physica status solidi (a) 212, nr 10 (10.06.2015): 2162–68. http://dx.doi.org/10.1002/pssa.201532040.
Pełny tekst źródłaUranbileg, Nergui, Chenglin Gao, Chunming Yang, Xichang Bao, Liangliang Han i Renqiang Yang. "Amorphous electron donors with controllable morphology for non-fullerene polymer solar cells". Journal of Materials Chemistry C 7, nr 35 (2019): 10881–90. http://dx.doi.org/10.1039/c9tc02663k.
Pełny tekst źródłaLim, Kyung-Geun, Soyeong Ahn, Young-Hoon Kim, Yabing Qi i Tae-Woo Lee. "Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic–inorganic hybrid perovskite solar cells". Energy & Environmental Science 9, nr 3 (2016): 932–39. http://dx.doi.org/10.1039/c5ee03560k.
Pełny tekst źródłaRozprawy doktorskie na temat "Polymeric Solar Cells"
Andersson, Lars Mattias. "Electronic Transport in Polymeric Solar Cells and Transistors". Doctoral thesis, Linköping : Department of Physics, Chemistry and Biology, Linköping University, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10380.
Pełny tekst źródłaMbambisa, Gcineka. "Polymeric-bimetallic oxide nanoalloy for the construction of photovoltaic cells". University of the Western Cape, 2014. http://hdl.handle.net/11394/4364.
Pełny tekst źródłaResearch in renewable energy has become a focal point as a solution to the energy crisis. One of renewable forms of energy is solar energy, with the main challenge in the development of the solar cells being the high cost. This has led to the exploration of the use of organic molecules to construct solar cells since it will lead to lowered costs of construction. The focus of this research is on the synthesis and characterisation of the polyaniline derivatives materials and zinc gallate for application in the construction of hybrid solar cells with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor. The polyaniline (PANi) and doped polyaniline derivatives, polyaniline phenathrene sulfonic acid (PANi-PSA), poly[ortho-methyl aniline] phenanthrene sulfonc acid (POMA-PSA) poly[ortho-methyl aniline] anthracene sulfonc acid (POMA-ASA) were produced via chemical synthetic procedures. The zinc gallate (ZnGa2O4) was also produced using a chemical method. The vibrational and electronic spectra of the polymers and zinc gallate were interrogated independently and dependently. Electronic transitions due to charge defects (polarons and bipolarons) were observed for the polymers that are doped. The PANi was the one with the lowest band gap of 2.4 eV with the POMA-ASA having the widest bandgap of 3.0 eV. The XRD and TEM analysis of the polymers revealed characteristics that show that the PANi has the highest level of crystallinity and the POMA-ASA displayed the least level of crystallinity. The electronic data, XRD, TEM data led to the conclusion that the conductivity of the polymers is decreasing in the following sequence, PANi > PANi-PSA > POMA-PSA > POMA-ASA. The photoluminescence of the polymers alone and with the nanoparticles was investigated in solution and on an ITO coated glass substrate. Photoluminescence was observed for the polymers due to relaxation of the exciton and also from the formation of excimers. The relaxation due to the exciton was observed at higher energy levels, while the one that is as a result of the excimer formation was seen at lower energy levels. Enhancement of the peak due to the excimer was observed when the compound is mixed with the nanoparticles in solution. When the analysis was done on the ITO coated glass substrate, it was found that zinc gallate does not lead to quenching of the emission of the polymers; hence it can not be used as an acceptor in this particular system. The electrochemical behaviour of the polyaniline derivatives was investigated using cyclic voltammetry and electrochemical impedance spectroscopy. Interaction of the polymers with the PCBM (acceptor) was investigated using UV-visible absorption spectroscopy and photoluminescence spectroscopy. It was able to quench the photoluminescence of the polymers. Hence it was used as an acceptor in the construction of the photovoltaic cells. The polymers alone and with the nanoparticles were used in the formation of bulk heterojunction photovoltaic cells with PCBM as an acceptor. The photovoltaic behaviour was investigated and PANi was the one that displayed the highest efficiency.
Ripollés, Sanchis Teresa. "Interfacial and Bulk Operation of Polymeric Solar Cells by Optoelectronics and Structural Techniques". Doctoral thesis, Universitat Jaume I, 2014. http://hdl.handle.net/10803/277095.
Pełny tekst źródłaMangold, Hannah [Verfasser]. "Charge separation and recombination in novel polymeric absorber materials for organic solar cells : a photophysical study / Hannah Mangold". Mainz : Universitätsbibliothek Mainz, 2013. http://d-nb.info/1046208454/34.
Pełny tekst źródłaEkhagen, Sebastian. "Stability of electron acceptor materials for organic solar cells : a work function study of C60/C70 derivatives and N2200". Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik (from 2013), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-72727.
Pełny tekst źródłaQuadretti, Debora. "Nuovi polimeri tiofenici per celle fotovoltaiche con architettura BHJ". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16662/.
Pełny tekst źródłaLiu, Hua. "Investigation on Transport Mechanisms and Interfacial Properties of Solar Cells By Simulation". University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1365873270.
Pełny tekst źródłaBraun, Slawomir. "Studies of Materials and Interfaces for Organic Electronics". Doctoral thesis, Linköping : Univ, 2007. http://www.bibl.liu.se/liupubl/disp/disp2007/tek1103s.pdf.
Pełny tekst źródłaYi, Chao. "Towards High Performance Polymer Solar Cells Through Interface Engineering". University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1367597024.
Pełny tekst źródłaHe, Yinghui. "Novel N-type Π-conjugated Polymers for all-polymer solar cells". Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0651/document.
Pełny tekst źródłaOrganic solar cells (OSCs) appear as a promising technology for renewable energy owing to their light weight, great flexibility and low-cost fabrication process. So far most of the OPV shave been using fullerene derivatives, such as PCBM or PC71BM, as the electron acceptor in the active layer, which have been proven to a bottleneck for this technology. Therefore,developing non-fullerene acceptors has become the new driving force for this field. All-polymer solar cells (all-PSCs) that have the advantages of robustness, stability and tunability have already achieved PCE up to 9%. Thus, developing novel acceptor materials is imperative for improving the performance of all-PSCs
Książki na temat "Polymeric Solar Cells"
Solar module packaging: Polymeric requirements and selection. Boca Raton: Taylor & Francis, 2011.
Znajdź pełny tekst źródłaKrebs, Frederik C., red. Stability and Degradation of Organic and Polymer Solar Cells. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119942436.
Pełny tekst źródłaKrebs, Frederik C. Stability and degradation of organic and polymer solar cells. Hoboken, N.J: Wiley, 2012.
Znajdź pełny tekst źródłaBurte, Edmund Paul. Herstellung und Charakterisierung von Inversionsschichtsolarzellen auf polykristallinem Silizium. Essen: W. Girardet, 1985.
Znajdź pełny tekst źródłaGregg, Brian A. Do the defects make it work?: Defect engineering in Pi-conjugated polymers and their solar cells. Golden, CO: National Renewable Energy Laboratory, 2008.
Znajdź pełny tekst źródłaRam, Kachare, Moacanin Jovan 1926- i Jet Propulsion Laboratory (U.S.), red. A summary report on the Flat-Plate Solar Array Project Workshop on Transparent Conducting Polymers: January 11 and 12, 1985. Pasadena, Calif: Jet Propulsion Laboratory, California Institute of Technology, 1985.
Znajdź pełny tekst źródłaPolymeric Solar Cells: Materials, Design, Manufacture. DEStech Publications, Inc., 2010.
Znajdź pełny tekst źródłaPoliskie, Michelle. Solar Module Packaging: Polymeric Requirements and Selection. Taylor & Francis Group, 2016.
Znajdź pełny tekst źródłaPoliskie, Michelle. Solar Module Packaging: Polymeric Requirements and Selection. Taylor & Francis Group, 2016.
Znajdź pełny tekst źródłaPoliskie, Michelle. Solar Module Packaging: Polymeric Requirements and Selection. Taylor & Francis Group, 2017.
Znajdź pełny tekst źródłaCzęści książek na temat "Polymeric Solar Cells"
Lu, Luyao, i Luping Yu. "Polymers for Solar Cells". W Encyclopedia of Polymeric Nanomaterials, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36199-9_12-5.
Pełny tekst źródłaLu, Luyao, i Luping Yu. "Polymers for Solar Cells". W Encyclopedia of Polymeric Nanomaterials, 2013–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_12.
Pełny tekst źródłaJohn, Suru Vivian, i Emmanuel Iwuoha. "Electrochromic Polymers for Solar Cells". W Polymers and Polymeric Composites: A Reference Series, 789–823. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95987-0_22.
Pełny tekst źródłaJohn, Suru Vivian, i Emmanuel I. Iwuoha. "Electrochromic Polymers for Solar Cells". W Polymers and Polymeric Composites: A Reference Series, 1–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92067-2_22-1.
Pełny tekst źródłaDuan, Chunhui, Chengmei Zhong, Fei Huang i Yong Cao. "Interface Engineering for High Performance Bulk-Heterojunction Polymeric Solar Cells". W Organic Solar Cells, 43–79. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4823-4_3.
Pełny tekst źródłaFacchetti, Antonio. "Polymeric Acceptor Semiconductors for Organic Solar Cells". W Organic Photovoltaics, 239–300. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527656912.ch08.
Pełny tekst źródłaSharma, Shveta, Richika Ganjoo, Abhinay Thakur i Ashish Kumar. "One-Dimensional Polymeric Nanocomposites for Flexible Solar Cells". W One-Dimensional Polymeric Nanocomposites, 307–20. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003223764-17.
Pełny tekst źródłaPetchimuthu, Karapagavinayagam, Baby Suneetha Ragupathy, Joseph Sahaya Anand, Suguna Perumal i Vedhi Chinnapiyan. "Recent Development in One-Dimensional Polymer-Based Nanomaterials for High-Performance Solar Cells". W One-Dimensional Polymeric Nanocomposites, 321–36. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003223764-18.
Pełny tekst źródłaSuganya, N., G. Hari Hara Priya i V. Jaisankar. "Fabrication of Natural Dye-Sensitised Solar Cells Based on Quasi Solid State Electrolyte Using TiO2 Nanocomposites". W Advanced Polymeric Systems, 31–43. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003337058-3.
Pełny tekst źródłaShuai, Zhigang, Lingyi Meng i Yuqian Jiang. "Theoretical Modeling of the Optical and Electrical Processes in Polymeric Solar Cells". W Topics in Applied Physics, 101–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45509-8_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Polymeric Solar Cells"
Raffaelle, Ryne, Brian Landi, Christopher Evans, Cory Cress, John Andersen, Stephanie Castro i Sheila Bailey. "Nanomaterial Development for Polymeric Solar Cells". W 2006 IEEE 4th World Conference on Photovoltaic Energy Conference. IEEE, 2006. http://dx.doi.org/10.1109/wcpec.2006.279413.
Pełny tekst źródłaCastro, Stephanie, Ryne Raffaelle, Sheila Bailey i Brian Landi. "Colloidal CuInS2 Nanoparticles for Polymeric Solar Cells". W 2nd International Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-5528.
Pełny tekst źródłaWu, Fu-Chiao, Tsai-Bau Wu, Horng-Long Cheng, Wei-Yang Chou i Fu-Ching Tang. "Microstructural modification of polycarbazole-based polymeric solar cells by thermal annealing". W 2014 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). IEEE, 2014. http://dx.doi.org/10.1109/am-fpd.2014.6867183.
Pełny tekst źródłade Oliveira Hansen, Roana M., Manuela Schiek, Yinghui Liu, Morten Madsen i Horst-Günter Rubahn. "Efficiency enhancement of ITO-free organic polymeric solar cells by light trapping". W SPIE Photonics Europe, redaktorzy Ralf Wehrspohn i Andreas Gombert. SPIE, 2012. http://dx.doi.org/10.1117/12.921797.
Pełny tekst źródłaProsposito, P., L. D'Amico, M. Casalboni i N. Motta. "Periodic arrangement of mono-dispersed gold nanoparticles for high performance polymeric solar cells". W 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2015. http://dx.doi.org/10.1109/nano.2015.7389005.
Pełny tekst źródłaYusli, Mohd Nizam, Khaulah Sulaiman, Swee-Ping Chia, Kurunathan Ratnavelu i Muhamad Rasat Muhamad. "Solvent Effect on the Formation of Photoactive Thin Films for the Polymeric Solar Cells". W FRONTIERS IN PHYSICS: 3rd International Meeting. AIP, 2009. http://dx.doi.org/10.1063/1.3192258.
Pełny tekst źródłaGuedes, Andre F. S., Vilmar P. Guedes, Monica L. Souza, Simone Tartari i Idaulo J. Cunha. "The electrodeposition of multilayers on a polymeric substrate in flexible organic photovoltaic solar cells". W SPIE Optics + Photonics for Sustainable Energy, redaktorzy Louay A. Eldada i Michael J. Heben. SPIE, 2015. http://dx.doi.org/10.1117/12.2189872.
Pełny tekst źródłaSamoylov, Anton, Nick Swenson, Chi Nguyen, Antonio Murrieta, Juliana Baltram, Matthew Dailey i Adam Printz. "Improving the Thermomechanical Stability of High Efficiency Perovskite Solar Cells via Polymeric Nanofiber Reinforcement". W Materials Research Society Fall 2022 Meeting, Boston, MA, 11/27/22-12/02/22. US DOE, 2022. http://dx.doi.org/10.2172/1922118.
Pełny tekst źródłaGao, Yongqian, Thomas P. Martin, Edwards T. Niles, Adam J. Wise, Alan K. Thomas i John K. Grey. "Spectroscopic and electrical imaging of disordered polymeric solar cells: understanding aggregation effects on material performance". W SPIE NanoScience + Engineering, redaktor Oleg V. Prezhdo. SPIE, 2010. http://dx.doi.org/10.1117/12.861859.
Pełny tekst źródłaKim, D. S., R. Smirani, M. A. El Khakani, J. Hong, M. H. Kang, B. Rounsaville, A. Ristow i in. "High performance solar cells with silicon carbon nitride (SiCxNy) antireflection coatings deposited from polymeric solid source". W 2008 33rd IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922640.
Pełny tekst źródłaRaporty organizacyjne na temat "Polymeric Solar Cells"
Sellinger, Alex. Perovskite Solar Cells: Addressing Low Cost, High Efficiency, and Reliability through Novel Polymeric Hole Transport Materials. Office of Scientific and Technical Information (OSTI), styczeń 2023. http://dx.doi.org/10.2172/1913945.
Pełny tekst źródłaYang, Yang. Achieving 15% Tandem Polymer Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2015. http://dx.doi.org/10.21236/ada618617.
Pełny tekst źródłaStiebitz, Paul. Hyperspectral Polymer Solar Cells, Integrated Power for Microsystems. Office of Scientific and Technical Information (OSTI), maj 2014. http://dx.doi.org/10.2172/1167104.
Pełny tekst źródłaSun, Sam-Shajing. Cost Effective Polymer Solar Cells Research and Education. Office of Scientific and Technical Information (OSTI), październik 2015. http://dx.doi.org/10.2172/1345531.
Pełny tekst źródłaJen, Alex K. Development of Efficient Charge-Selective Materials for Bulk Heterojunction Polymer Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2015. http://dx.doi.org/10.21236/ada616502.
Pełny tekst źródłaAlivisatos, A. P. Hybrid Nanorod-Polymer Solar Cell: Final Report; 19 July 1999--19 September 2002. Office of Scientific and Technical Information (OSTI), sierpień 2003. http://dx.doi.org/10.2172/15004565.
Pełny tekst źródłaAdam J. Moule. Final Closeout report for grant FG36-08GO18018, titled: Functional Multi-Layer Solution Processable Polymer Solar Cells. Office of Scientific and Technical Information (OSTI), maj 2012. http://dx.doi.org/10.2172/1047857.
Pełny tekst źródłaHeeger, Alan J., i Thuc-Quyen Nguyen. Functional Interfaces in Polymer-Based Bulk Heterojunction Solar Cells: Establishment of a Cluster for Interdisciplinary Research and Training. Office of Scientific and Technical Information (OSTI), styczeń 2009. http://dx.doi.org/10.2172/946053.
Pełny tekst źródłaMantel, A., I. Irgibaeva, A. Aldongarov i N. Barashkov. Preparation and characterization of down-shifting film for silicon solar cell based on the stilben 420, PVA polymer and silver nanoparticles. Physico-Technical Society of Kazakhstan, grudzień 2017. http://dx.doi.org/10.29317/ejpfm.2017010209.
Pełny tekst źródła