Gotowa bibliografia na temat „Polymer Metal Composite”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Polymer Metal Composite”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Polymer Metal Composite"
Übelacker, David, Johannes Hohmann i Peter Groche. "Force Requirements in Shear Cutting of Metal-Polymer-Metal Composites". Advanced Materials Research 1018 (wrzesień 2014): 137–44. http://dx.doi.org/10.4028/www.scientific.net/amr.1018.137.
Pełny tekst źródłaHuang, Liangsong, Yu Hu, Yun Zhao i Yuxia Li. "Modeling and Control of IPMC Actuators Based on LSSVM-NARX Paradigm". Mathematics 7, nr 8 (13.08.2019): 741. http://dx.doi.org/10.3390/math7080741.
Pełny tekst źródłaAnnabestani, Mohsen, Nadia Naghavi i Mohammad Maymandi-Nejad. "From modeling to implementation of a method for restraining back relaxation in ionic polymer–metal composite soft actuators". Journal of Intelligent Material Systems and Structures 29, nr 15 (24.07.2018): 3124–35. http://dx.doi.org/10.1177/1045389x18783082.
Pełny tekst źródłaKumar, Ponnusamy Senthil, i P. R. Yaashikaa. "Ionic Polymer Metal Composites". Diffusion Foundations 23 (sierpień 2019): 64–74. http://dx.doi.org/10.4028/www.scientific.net/df.23.64.
Pełny tekst źródłaTahir, Furqan, Abdelnasser Mabrouk, Sami G. Al-Ghamdi, Igor Krupa, Tomas Sedlacek, Ahmed Abdala i Muammer Koc. "Sustainability Assessment and Techno-Economic Analysis of Thermally Enhanced Polymer Tube for Multi-Effect Distillation (MED) Technology". Polymers 13, nr 5 (24.02.2021): 681. http://dx.doi.org/10.3390/polym13050681.
Pełny tekst źródłaGuo, Xiaomin, Bin Zheng i Jinlei Wang. "Controllable Synthesis of Metal-Organic Framework/Polyethersulfone Composites". Crystals 10, nr 1 (15.01.2020): 39. http://dx.doi.org/10.3390/cryst10010039.
Pełny tekst źródłaWang, P. H., i Cai-Yuan Pan. "Polymer metal composite microspheres". European Polymer Journal 36, nr 10 (październik 2000): 2297–300. http://dx.doi.org/10.1016/s0014-3057(00)00069-0.
Pełny tekst źródłaSingh, Reeti, Ján Kondás i Christian Bauer. "Connecting Polymers and Metals Using Cold Gas Spray". AM&P Technical Articles 176, nr 8 (1.11.2018): 38–40. http://dx.doi.org/10.31399/asm.amp.2018-08.p038.
Pełny tekst źródłaTran, Vinh Van, Truong Thi Vu Nu, Hong-Ryun Jung i Mincheol Chang. "Advanced Photocatalysts Based on Conducting Polymer/Metal Oxide Composites for Environmental Applications". Polymers 13, nr 18 (8.09.2021): 3031. http://dx.doi.org/10.3390/polym13183031.
Pełny tekst źródłaAugustyn, Piotr, Piotr Rytlewski, Krzysztof Moraczewski i Adam Mazurkiewicz. "A review on the direct electroplating of polymeric materials". Journal of Materials Science 56, nr 27 (24.06.2021): 14881–99. http://dx.doi.org/10.1007/s10853-021-06246-w.
Pełny tekst źródłaRozprawy doktorskie na temat "Polymer Metal Composite"
Mokhtari, Morgane. "FeCr composites : from metal/metal to metal/polymer via micro/nano metallic foam, exploitation of liquid metal dealloying process". Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI088/document.
Pełny tekst źródłaNanoporous metals have attracted considerable attention for their excellent functional properties. The first developed technique used to prepare such nanoporous noble metals is dealloying in aqueous solution. Porous structures with less noble metals such as Ti or Fe are highly desired for various applications including energy-harvesting devices. The less noble metals, unstable in aqueous solution, are oxidized immediately when they contact water at a given potential so aqueous dealloying is only possible for noble metals. To overcome this limitation, a new dealloying method using a metallic melt instead of aqueous solution was developed. Liquid metal dealloying is a selective dissolution phenomenon of a mono-phase alloy solid precursor: one component (referred as soluble component) being soluble in the metallic melt while the other (referred as targeted component) is not. When the solid precursor contacts the metallic melt, only atoms of the soluble component dissolve into the melt inducing a spontaneously organized bi-continuous structure (targeted+sacrificial phases), at a microstructure level. This sacrificial phase can finally be removed by chemical etching to obtain the final nanoporous materials. Because this is a water-free process, it has enabled the preparation of nanoporous structures in less noble metals such as Ti, Si, Fe, Nb, Co and Cr. The objectives of this study are the fabrication and the microstructure and mechanical characterization of 3 different types of materials by dealloying process : (i) metal/metal composites (FeCr-Mg), (ii) porous metal (FeCr) (iii) metal/polymer composites (FeCr-epoxy resin). The last objective is the evaluation of the possibilities to apply liquid metal dealloying in an industrial context. The microstructure study was based on 3D observation by X-ray tomography and 2D analysis with electron microscopy (SEM, SEM-EDX, SEM-EBSD). To have a better understanding of the dealloying, the process was followed in situ by X-ray tomography and X-ray diffraction. Finally the mechanical properties were evaluated by nanoindentation and compression
Bhat, Nikhil Dilip. "Modeling and precision control of ionic polymer metal composite". Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/1152.
Pełny tekst źródłaYusuf, Suhaila Mohamad. "Development of an ionic polymer metal composite (IPMC) microgripper". Thesis, University of Leeds, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.550855.
Pełny tekst źródłaAnyaogu, Kelechi C. "Stabilized metal nanoparticle-polymer composites preparation, characterization and potential applications /". Bowling Green, Ohio : Bowling Green State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=bgsu1222126708.
Pełny tekst źródłaGraham, Adam. "Electrical properties and vapour sensing characteristics of a novel metal-polymer composite". Thesis, Durham University, 2008. http://etheses.dur.ac.uk/2376/.
Pełny tekst źródłaSkinner, Anna Penn. "Ion Conducting Polyelectrolytes in Conductive Network Composites and Humidity Sensing Applications for Ionic Polymer-Metal Composite Actuators". Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71683.
Pełny tekst źródłaMaster of Science
Sun, Weizhen. "Microstructure-based FE Modeling and Measurements of Magnetic Properties of Polymer Matrix-Metal Composites". Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/74946.
Pełny tekst źródłaMaster of Science
Hands, Philip James Walton. "Vapour sensing applications and electrical conduction mechanisms of a novel metal-polymer composite". Thesis, Durham University, 2003. http://etheses.dur.ac.uk/4084/.
Pełny tekst źródłaJadhav, Niteen. "Novel Conducting Polymer Containing Composite Coatings for the Corrosion Protection of Metal Alloys". Diss., North Dakota State University, 2013. https://hdl.handle.net/10365/27037.
Pełny tekst źródłaU.S. Army Research Laboratory (Grant No. W911NF-09-2-0014, W911NF-10-2-0082, and W911NF-11-2-0027)
Seo, Geon S. "Time evolution of current and displacement of ion-exchange polymer/metal composite actuators". Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/280748.
Pełny tekst źródłaKsiążki na temat "Polymer Metal Composite"
International Conference on Composite Interfaces (2nd 1988 Cleveland, Ohio). Interfaces in polymer, ceramic and metal matrix composites. Redaktor Ishida Hatsuo. London: Elsevier, 1988.
Znajdź pełny tekst źródłaT, Serafini Tito, DiCarlo James A i Lewis Research Center, red. Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1985.
Znajdź pełny tekst źródłaHatsuo, Ishida, red. Interfaces in polymer, ceramic, and metal matrix composites: Proceedings of the Second International Conference on Composite Interfaces (ICCI-II) held June 13-17, 1988, in Cleveland, Ohio, USA. New York: Elsevier, 1988.
Znajdź pełny tekst źródłaNanocomposite structures and dispersions: Science and nanotechnology--fundamental principles and colloidal particles. Amsterdam: Elsevier, 2006.
Znajdź pełny tekst źródłaDelmonte, John. Metal/Polymer Composites. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-1446-2.
Pełny tekst źródłaMetal/polymer composites. New York: Van Nostrand Reinhold, 1990.
Znajdź pełny tekst źródłaLuigi, Nicolais, i Carotenuto Gianfranco, red. Metal-polymer nanocomposites. Hoboken, N.J: Wiley-Interscience, 2005.
Znajdź pełny tekst źródłaBhattacharya, Srijan. Ionic Polymer–Metal Composites. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003204664.
Pełny tekst źródłaY, Rajapakse, Vinson Jack R. 1929-, American Society of Mechanical Engineers. Aerospace Division. i International Mechanical Engineering Congress and Exposition (1995 : San Francisco, Calif.), red. High strain rate effects on polymer, metal and ceramic matrix composites and other advanced materials: Presented at the 1995 ASME International Mechanical Engineering Congress and Exposition, November 12-17, 1995, San Francisco, California. New York: American Society of Mechanical Engineers, 1995.
Znajdź pełny tekst źródłaL, Mykkanen Donald, red. Metal and polymer matrix composites. Park Ridge, N.J., U.S.A: Noyes Data Corp., 1987.
Znajdź pełny tekst źródłaCzęści książek na temat "Polymer Metal Composite"
Akhtar, Syed Nadeem, Jayesh Cherusseri, J. Ramkumar i Kamal K. Kar. "Ionic Polymer Metal Composites". W Composite Materials, 223–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49514-8_7.
Pełny tekst źródłaBiswal, Dillip Kumar. "Ionic Polymer–Metal Composite Actuators". W Ionic Polymer–Metal Composites, 17–30. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003204664-2.
Pełny tekst źródłaCamanho, Pedro P., i Giuseppe Catalanotti. "Mechanical Fastening of Composite and Composite-Metal Structures". W Joining of Polymer-Metal Hybrid Structures, 187–202. Hoboken, NJ: John Wiley & Sons, Inc, 2017. http://dx.doi.org/10.1002/9781119429807.ch7.
Pełny tekst źródłaGendron, David. "Conducting Polymer Based Ionic Polymer Metal Composite Actuators". W Ionic Polymer Metal Composites for Sensors and Actuators, 35–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13728-1_3.
Pełny tekst źródłaKireitseu, M. V., i L. V. Bochkareva. "Metal-Polymer-Ceramic Nano/Composite Material". W Experimental Analysis of Nano and Engineering Materials and Structures, 35–36. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_16.
Pełny tekst źródłaKhan, Siladitya, Gautam Gare, Ritwik Chattaraj, Srijan Bhattacharya, Bikash Bepari i Subhasis Bhaumik. "Inverse Kinematic Modeling of Bending Response of Ionic Polymer Metal Composite Actuators". W Ionic Polymer–Metal Composites, 95–121. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003204664-5.
Pełny tekst źródłaPanin, Sergey V., Lyudmila A. Kornienko, Nguyen Duc Anh, Vladislav O. Alexenko, Dmitry G. Buslovich i Svetlana A. Bochkareva. "Three-Component Wear-Resistant PEEK-Based Composites Filled with PTFE and MoS2: Composition Optimization, Structure Homogenization, and Self-lubricating Effect". W Springer Tracts in Mechanical Engineering, 275–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60124-9_13.
Pełny tekst źródłaJain, Ravi Kant. "Application of Ionic Polymer Metal Composite (IPMC) as Soft Actuators in Robotics and Bio-Mimetics". W Ionic Polymer–Metal Composites, 53–94. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003204664-4.
Pełny tekst źródłaPopa, A., A. Filimon i L. Lupa. "Polysaccharide-Based Ionic Polymer Metal Composite Actuators". W Ionic Polymer Metal Composites for Sensors and Actuators, 19–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13728-1_2.
Pełny tekst źródłaDidi, Mirja, i Peter Mitschang. "Induction Welding of Metal/Composite Hybrid Structures". W Joining of Polymer-Metal Hybrid Structures, 101–25. Hoboken, NJ: John Wiley & Sons, Inc, 2017. http://dx.doi.org/10.1002/9781119429807.ch4.
Pełny tekst źródłaStreszczenia konferencji na temat "Polymer Metal Composite"
Mishra, S. R., K. Ghosh, J. Losby, T. Kehl i A. Viano. "Half-metal-polymer magnetoresistive composite". W INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1464156.
Pełny tekst źródłaShahinpoor, Mohsen. "Electrically Controllable Deformations in Ionic Polymer Metal Composite Actuators". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39037.
Pełny tekst źródłaKim, Doyeon, i Kwang J. Kim. "Electrochemistry of ionic polymer-metal composite". W Smart Structures and Materials, redaktor Yoseph Bar-Cohen. SPIE, 2005. http://dx.doi.org/10.1117/12.592054.
Pełny tekst źródłaSzostak, Marek, i Jacek Andrzejewski. "Thermal Properties of Polymer-Metal Composites". W ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20506.
Pełny tekst źródłaKawakita, Jin, i Toyohiro Chikyow. "Conductive polymer/metal composite for flexible interconnect". W 2016 International Conference on IC Design and Technology (ICICDT). IEEE, 2016. http://dx.doi.org/10.1109/icicdt.2016.7542053.
Pełny tekst źródłaFajstavr, D., P. Slepicka i V. Svorcik. "Preparation of Composite Periodic Metal-Polymer Nanostructures". W 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2018. http://dx.doi.org/10.1109/nano.2018.8626339.
Pełny tekst źródłaPudipeddi, Arun, Doyeon Kim i Kwang J. Kim. "Sensory behavior of ionic polymer metal composite". W Smart Structures and Materials, redaktor Yoseph Bar-Cohen. SPIE, 2006. http://dx.doi.org/10.1117/12.654993.
Pełny tekst źródłaMishra, S. R., J. Losby i K. Ghosh. "Transport Properties of Half-metal-Polymer Composite". W INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.376107.
Pełny tekst źródłaArumugam, Jayavel, i Arun Srinivasa. "Thermodynamic Modeling of Ionic Polymer-Metal Composite Beams". W ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-8149.
Pełny tekst źródłaDai, Lijun, Yujun Zhang, Haoran Zhou, Lei Li i Hongwei Duan. "Preparation of a New Ionic Polymer-metal Composite". W 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2007. http://dx.doi.org/10.1109/nems.2007.352102.
Pełny tekst źródłaRaporty organizacyjne na temat "Polymer Metal Composite"
Newton, Crystal H. Implementation of the Military Handbook 17 for Polymer Matrix Composites and Metal Matrix Composites. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1994. http://dx.doi.org/10.21236/ada278795.
Pełny tekst źródłaNewton, Crystal H. Implementation of the Military Handbook 17 for Polymer Matrix Composites and Metal Matrix Composites. Fort Belvoir, VA: Defense Technical Information Center, październik 1994. http://dx.doi.org/10.21236/ada285629.
Pełny tekst źródłaNewton, Crystal H. Implementation of the Military Handbook 17 for Polymer Matrix Composites and Metal Matrix Composites. Fort Belvoir, VA: Defense Technical Information Center, październik 1994. http://dx.doi.org/10.21236/ada285772.
Pełny tekst źródłaNewton, Crystal H. Briefing/Review Meeting, Implementation of the Military Handbook 17 for Polymer Matrix Composites and Metal Matrix Composites. Fort Belvoir, VA: Defense Technical Information Center, marzec 1994. http://dx.doi.org/10.21236/ada277446.
Pełny tekst źródłaNewton, Crystal H. Briefing/Review Meeting Implementation of the Military Handbook 17 for Polymer Matrix Composites and Metal Matrix Composites. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1995. http://dx.doi.org/10.21236/ada290769.
Pełny tekst źródłaShriver, D. F., i M. A. Ratner. Mixed ionic-electronic conduction and percolation in polymer electrolyte metal oxide composites. Final report. Office of Scientific and Technical Information (OSTI), czerwiec 1997. http://dx.doi.org/10.2172/491618.
Pełny tekst źródła