Gotowa bibliografia na temat „Polymer Hybrid Systems”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Polymer Hybrid Systems”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Polymer Hybrid Systems"
DRZYCIMSKA, AGNIESZKA, i TADEUSZ SPYCHAJ. "Hybrid hydrophilic polymer/montmorillonite systems". Polimery 53, nr 05 (marzec 2008): 169–75. http://dx.doi.org/10.14314/polimery.2008.169.
Pełny tekst źródłaSun, Qi, Zhenzhen Yang i Xianrong Qi. "Design and Application of Hybrid Polymer-Protein Systems in Cancer Therapy". Polymers 15, nr 9 (8.05.2023): 2219. http://dx.doi.org/10.3390/polym15092219.
Pełny tekst źródłaKrywko-Cendrowska, Agata, Stefano di Leone, Maryame Bina, Saziye Yorulmaz-Avsar, Cornelia G. Palivan i Wolfgang Meier. "Recent Advances in Hybrid Biomimetic Polymer-Based Films: from Assembly to Applications". Polymers 12, nr 5 (26.04.2020): 1003. http://dx.doi.org/10.3390/polym12051003.
Pełny tekst źródłaNeilson, Robert H., Junmin Ji, Sridevi Narayan-Sarathy, Dennis W. Smith i David A. Babb. "New Phosphorus-Fluorocarbon Hybrid Polymer Systems". Phosphorus, Sulfur, and Silicon and the Related Elements 144, nr 1 (1.01.1999): 221–24. http://dx.doi.org/10.1080/10426509908546222.
Pełny tekst źródłaOphir, Amos, Lior Zonder i Pablo F. Rios. "Thermodynamic characterization of hybrid polymer blend systems". Polymer Engineering & Science 49, nr 6 (czerwiec 2009): 1168–76. http://dx.doi.org/10.1002/pen.21364.
Pełny tekst źródłaCao, Jie, Tao Song, Yuejun Zhu, Xiujun Wang, Shanshan Wang, Jingcheng Yu, Yin Ba i Jian Zhang. "Aqueous hybrids of amino-functionalized nanosilica and acrylamide-based polymer for enhanced oil recovery". RSC Advances 8, nr 66 (2018): 38056–64. http://dx.doi.org/10.1039/c8ra07076h.
Pełny tekst źródłaGoetzendorfer, Babette, Thomas Mohr i Ralf Hellmann. "Hybrid Approaches for Selective Laser Sintering by Building on Dissimilar Materials". Materials 13, nr 22 (22.11.2020): 5285. http://dx.doi.org/10.3390/ma13225285.
Pełny tekst źródłaPark, Jungyul, Jinseok Kim, Dukmoon Roh, Sukho Park, Byungkyu Kim i Kukjin Chun. "Fabrication of complex 3D polymer structures for cell–polymer hybrid systems". Journal of Micromechanics and Microengineering 16, nr 8 (3.07.2006): 1614–19. http://dx.doi.org/10.1088/0960-1317/16/8/024.
Pełny tekst źródłaAmri, Nedjla, Djamila Ghemati, Nadia Bouguettaya i Djamel Aliouche. "Swelling Kinetics and Rheological Behavior of Chitosan-PVA / Montmorillonite Hybrid Polymers". Periodica Polytechnica Chemical Engineering 63, nr 1 (2.08.2018): 179–89. http://dx.doi.org/10.3311/ppch.12227.
Pełny tekst źródłaForrest, B. M., i U. W. Suter. "Hybrid Monte Carlo simulations of dense polymer systems". Journal of Chemical Physics 101, nr 3 (sierpień 1994): 2616–29. http://dx.doi.org/10.1063/1.467634.
Pełny tekst źródłaRozprawy doktorskie na temat "Polymer Hybrid Systems"
Kanelidis, Ioannis [Verfasser]. "Polymer-Nanocrystal Composites: Copolymers, Polymeric Particles and Hybrid Systems / Ioannis Kanelidis". Wuppertal : Universitätsbibliothek Wuppertal, 2012. http://d-nb.info/1022590464/34.
Pełny tekst źródłaLi, Bin. "Seismic Performance of Hybrid Fiber Reinforced Polymer-Concrete Pier Frame Systems". FIU Digital Commons, 2008. http://digitalcommons.fiu.edu/etd/195.
Pełny tekst źródłaCollins, Michelle Louise. "Surface treatment for new engineered aerospace systems". Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/surface-treatment-for-new-engineered-aerospace-systems(79c66e05-aaea-4dc3-bb8f-4d281ea1ea78).html.
Pełny tekst źródłaKroll, Douglas M. (Douglas Michael). "Using polymer electrolyte membrane fuel cells in a hybrid surface ship propulsion plant to increase fuel efficiency". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61909.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 59).
An increasingly mobile US Navy surface fleet and oil price uncertainty contrast with the Navy's desire to lower the amount of money spent purchasing fuel. Operational restrictions limiting fuel use are temporary and cannot be dependably relied upon. Long term technical research toward improving fuel efficiency is ongoing and includes advanced gas turbines and integrated electric propulsion plants, but these will not be implemented fleet wide in the near future. The focus of this research is to determine if a hybrid fuel cell and gas turbine propulsion plant outweigh the potential ship design disadvantages of physically implementing the system. Based on the potential fuel savings available, the impact on surface ship architecture will be determined by modeling the hybrid fuel cell powered ship and conducting a side by side comparison to one traditionally powered. Another concern that this solution addresses is the trend in the commercial shipping industry of designing more cleanly running propulsion plants.
Douglas M. Kroll.
S.M.in Engineering and Management
Nav.E.
Musch, Janelle C. Riemersma. "Design optimization of sustainable panel systems using hybrid natural/synthetic fiber reinforced polymer composites". Diss., Connect to online resource - MSU authorized users, 2008.
Znajdź pełny tekst źródłaTitle from PDF t.p. (viewed on Aug. 3, 2009) Includes bibliographical references (p.129-132). Also issued in print.
Laik, Suzanne. "Investigation of Polyhedral Oligomeric Silsesquioxanes for improved fire retardancy of hybrid epoxy-based polymer systems". Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0126/document.
Pełny tekst źródłaThermoset polymer composite materials are used in a number of application domains, amongst which the transports sector, but they suffer from poor fire resistance which limits their use for obvious safety and security issues. With the increasingly demanding restrictions from the European Commission, there is a real need to seek for alternative solutions. Recent studies have found the Polyhedral Oligomeric Silsesquioxane (POSS) compounds interesting as fire retardant agents, particularly the POSS bearing phenyl ligands. The present work aimed at investigating how the fire retardancy of hybrid epoxy networks can be improved by incorporating Polyhedral Oligomeric Silsesquioxanes (POSS). In this study, the nature of the epoxy-amine comonomers was varied, as well as the POSS structure. An inert POSS and two multifunctional POSS were selected in order to generate various morphologies. The aim was to answer the question: does a structure-property relationship exist as concerns the fire behaviour of epoxy networks? Particular attention was dedicated to systems containing the trisilanolphenyl POSS (POSSOH) for which different processes of dispersion were implemented. The POSS dispersion state was shown to be greatly influenced by the type of POSS ligands, but also by the epoxy prepolymer nature in the case of the versatile POSSOH. In particular, intricate, never-observed morphologies were discovered in the networks based on Tetraglycidyl(diaminodiphenyl) methane (TGDDM) and containing POSSOH. The study of functional POSS-involving interactions and epoxy-amine kinetics in the model systems revealed the high catalytic power of the combined presence of POSSOH and an aluminium-based catalyst in the model epoxy networks, as well as the occurrence of homopolymerisation. The thermo-mechanical properties were not significantly modified by the addition of POSS. Finally, spectacular improvements in fire retardancy were obtained in some cases, in particular when the POSSOH and the Al-based catalyst were introduced in combination. The fire protection mechanism was attributed to intumescence in the TGDDM-based networks. The addition of POSSOH and the Al-catalyst was found to be efficient in all the epoxy-amine network types, which could not be clearly related to the POSSOH structures but was rather attributed to a chemical synergistic effect
Majewski, Alexander [Verfasser], i Axel [Akademischer Betreuer] Müller. "Dual-Responsive Polymer and Hybrid Systems: Applications for Gene Delivery and Hydrogels / Alexander Majewski. Betreuer: Axel Müller". Bayreuth : Universität Bayreuth, 2013. http://d-nb.info/1059352680/34.
Pełny tekst źródłaShaheen, Murtadha A. "POWER MAXIMIZATION FOR PYROELECTRIC, PIEZOELECTRIC, AND HYBRID ENERGY HARVESTING". VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4462.
Pełny tekst źródłaChang, Yin-Jung. "Optical Interconnects for In-Plane High-Speed Signal Distribution at 10 Gb/s: Analysis and Demonstration". Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-11182006-155605/.
Pełny tekst źródłaGee-Kung Chang, Committee Chair ; Thomas K. Gaylord, Committee Co-Chair ; Glenn S. Smith, Committee Member ; John A. Buck, Committee Member ; Ali Adibi, Committee Member ; C. P. Wong, Committee Member.
Cui, Li. "Conducting polymer-based QCM-interdigitated electrode hybrid electronic nose system". Thesis, University of Glasgow, 1999. http://theses.gla.ac.uk/3974/.
Pełny tekst źródłaKsiążki na temat "Polymer Hybrid Systems"
Sadiku, Emmanuel Rotimi, i Blessing A. Aderibigbe. Hybrid Polymeric Systems for Biomedical Applications. Elsevier Science & Technology, 2024.
Znajdź pełny tekst źródłaSavkina, Rada, i Larysa Khomenkova. Solid State Composites and Hybrid Systems. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaSavkina, Rada, i Larysa Khomenkova. Solid State Composites and Hybrid Systems. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaSavkina, Rada, i Larysa Khomenkova. Solid State Composites and Hybrid Systems: Fundamentals and Applications. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaSavkina, Rada, i Larysa Khomenkova. Solid State Composites and Hybrid Systems: Fundamentals and Applications. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaSavkina, Rada, i Larysa Khomenkova. Solid State Composites and Hybrid Systems: Fundamentals and Applications. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaSolid State Composites and Hybrid Systems: Fundamentals and Applications. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Polymer Hybrid Systems"
Li, Bin, i Wei-Hong Zhong. "Chapter 8 Hybrid Polymer Nanocomposite Systems". W Polymer Nanocomposites for Dielectrics, 171–92. Penthouse Level, Suntec Tower 3, 8 Temasek Boulevard, Singapore 038988: Pan Stanford Publishing, 2016. http://dx.doi.org/10.1201/9781315364490-9.
Pełny tekst źródłaBorkovska, Lyudmyla. "Semiconductor Nanocrystals Embedded in Polymer Matrix". W Solid State Composites and Hybrid Systems, 60–91. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9781351176071-3.
Pełny tekst źródłaDavid, Eric, i Thomas Andritsch. "Dielectric Properties of Epoxy/POSS and PE/POSS Systems". W Polymer/POSS Nanocomposites and Hybrid Materials, 233–54. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02327-0_7.
Pełny tekst źródłaLaird, Eric D., Bin Dong, Wenda Wang, Tian Zhou, Shan Cheng i Christopher Y. Li. "Polymer Single Crystals in Nanoparticle-Containing Hybrid Systems". W Encyclopedia of Polymers and Composites, 1–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37179-0_26-1.
Pełny tekst źródłaAlirezaei, Sara, Soheil Dariushi i Mohammad Hosain Beheshty. "Tensile Properties of Jute/Epoxy/Aluminum Hybrid Laminates". W Eco-friendly and Smart Polymer Systems, 255–58. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_61.
Pełny tekst źródłaDehnoei, Ali Ahmadi, i Somayeh Ghasemirad. "Environmentally Friendly Hybrid Polysilsesquioxane-Poly(Butyl Acrylate) Nanocomposite: Film Properties". W Eco-friendly and Smart Polymer Systems, 170–73. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_41.
Pełny tekst źródłaYong, Xin, Stephen C. Snow, Olga Kuksenok i Anna C. Balazs. "Developing Hybrid Modeling Methods to Simulate Self-Assembly in Polymer Nanocomposites". W Self-Assembling Systems, 20–52. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119113171.ch2.
Pełny tekst źródłaRanjbar Mohammadi, Marziyeh, Mohammad Nouri-Taba i Ehsan Yousefi. "Biological and Antibacterial Properties of Catechin-Incorporated PLA/Gelatin Hybrid Microfibers". W Eco-friendly and Smart Polymer Systems, 497–501. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_121.
Pełny tekst źródłaDeriss, Mehrnoush Jowkar, i Ola J. Karlsson. "High solids waterborne hybrid systems. Effect of surfactant concentration and pH on droplet size and morphology". W Aqueous Polymer Dispersions, 149–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b12159.
Pełny tekst źródłaDeriss, Mehrnoush Jowkar, i Ola J. Karlsson. "High solids waterborne hybrid systems. Effect of surfactant concentration and pH on droplet size and morphology". W Aqueous Polymer Dispersions, 149–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-36474-0_30.
Pełny tekst źródłaStreszczenia konferencji na temat "Polymer Hybrid Systems"
Ekimenkova, Alisa S., i Anna Voznesenskaya. "Modeling of hybrid polymer optical systems". W Optical Design and Engineering VII, redaktorzy Laurent Mazuray, Rolf Wartmann i Andrew P. Wood. SPIE, 2018. http://dx.doi.org/10.1117/12.2312706.
Pełny tekst źródłaKörner, Martin, Oswald Prucker i Jürgen Rühe. "Polymer hybrid materials for planar optronic systems". W SPIE Optical Systems Design, redaktorzy Laurent Mazuray, Rolf Wartmann i Andrew P. Wood. SPIE, 2015. http://dx.doi.org/10.1117/12.2191072.
Pełny tekst źródłaColeman, Jonathan N., Martin Cadek, Alan B. Dalton, Edgar Munoz, Joselito Razal, Ray H. Baughman i Werner J. Blau. "Mechanical properties of hybrid polymer nanotube systems". W Microtechnologies for the New Millennium 2003, redaktorzy Robert Vajtai, Xavier Aymerich, Laszlo B. Kish i Angel Rubio. SPIE, 2003. http://dx.doi.org/10.1117/12.502237.
Pełny tekst źródłaXu, Tian-Bing, i Ji Su. "Theoretical Modeling for Electroactive Polymer-Ceramic Hybrid Actuation Systems". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62491.
Pełny tekst źródłaRIBEIRO, M. C. S., A. J. M. FERREIRA i A. T. MARQUES. "FLEXURAL BEHAVIOUR OF GFRP-POLYMER CONCRETE HYBRID STRUCTURAL SYSTEMS". W Proceedings of the Sixth International Symposium on FRP Reinforcement for Concrete Structures (FRPRCS–6). World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812704863_0065.
Pełny tekst źródłaSugita, A., T. Makiyama, R. Aoshima, A. Ono, W. Inami i Y. Kawata. "Nonlinear plasmonics of NLO polymer/Au nanoparticle hybrid systems". W Micro + Nano Materials, Devices, and Applications 2019, redaktorzy M. Cather Simpson i Saulius Juodkazis. SPIE, 2019. http://dx.doi.org/10.1117/12.2541283.
Pełny tekst źródłaBlacker, Richard S., K. L. Lewis, I. Sage, I. Mason i K. Webb. "Optically isotropic polymer / liquid crystal hybrid filters". W Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oic.1998.the.5.
Pełny tekst źródłaSundaresan, Vishnu Baba, i Hao Zhang. "Chemomechanical Transduction in Hybrid Bio-Derived Conducting Polymer Actuator". W ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3630.
Pełny tekst źródłaGärtner, Claudia, Stefanie Kirsch, Birgit Anton i Holger Becker. "Hybrid microfluidic systems: combining a polymer microfluidic toolbox with biosensors". W MOEMS-MEMS 2007 Micro and Nanofabrication. SPIE, 2007. http://dx.doi.org/10.1117/12.715041.
Pełny tekst źródłaBusek, Karel, Vitezslav Jerábek, Julio Armas Arciniega i Václav Prajzler. "The hybrid photonic planar integrated receiver with a polymer optical waveguide". W Photonics, Devices, and Systems IV, redaktorzy Pavel Tománek, Dagmar Senderáková i Miroslav Hrabovský. SPIE, 2008. http://dx.doi.org/10.1117/12.817997.
Pełny tekst źródłaRaporty organizacyjne na temat "Polymer Hybrid Systems"
Forouzan, Eddie. Improved, low-cost lithium polymer battery system for electric and hybrid vehicle application. Final report. Office of Scientific and Technical Information (OSTI), wrzesień 1999. http://dx.doi.org/10.2172/805480.
Pełny tekst źródła