Artykuły w czasopismach na temat „Polymer Electrolytes - Ion Dynamics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Polymer Electrolytes - Ion Dynamics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Mabuchi, Takuya, Koki Nakajima i Takashi Tokumasu. "Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries". Micromachines 12, nr 9 (26.08.2021): 1012. http://dx.doi.org/10.3390/mi12091012.
Pełny tekst źródłaKumar, Asheesh, Raghunandan Sharma, M. Suresh, Malay K. Das i Kamal K. Kar. "Structural and ion transport properties of lithium triflate/poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolytes". Journal of Elastomers & Plastics 49, nr 6 (4.11.2016): 513–26. http://dx.doi.org/10.1177/0095244316676512.
Pełny tekst źródłaYusof, S. Z., H. J. Woo i A. K. Arof. "Ion dynamics in methylcellulose–LiBOB solid polymer electrolytes". Ionics 22, nr 11 (25.05.2016): 2113–21. http://dx.doi.org/10.1007/s11581-016-1733-y.
Pełny tekst źródłaGaraga, Mounesha N., Sahana Bhattacharyya i Steve G. Greenbaum. "Achieving Enhanced Mobility of Ions in Ionic Liquid-Based Gel Polymer Electrolytes By Incorporating Inorganic Nanofibers for Li-Ion Battery". ECS Meeting Abstracts MA2022-02, nr 2 (9.10.2022): 160. http://dx.doi.org/10.1149/ma2022-022160mtgabs.
Pełny tekst źródłaPeters, Brandon L., Zhou Yu, Paul C. Redfern, Larry A. Curtiss i Lei Cheng. "Effects of Salt Aggregation in Perfluoroether Electrolytes". Journal of The Electrochemical Society 169, nr 2 (1.02.2022): 020506. http://dx.doi.org/10.1149/1945-7111/ac4c7a.
Pełny tekst źródłaPark, Habin, Anthony Engler, Nian Liu i Paul Kohl. "Dynamic Anion Delocalization of Single-Ion Conducting Polymer Electrolyte for High-Performance of Solid-State Lithium Metal Batteries". ECS Meeting Abstracts MA2022-02, nr 3 (9.10.2022): 227. http://dx.doi.org/10.1149/ma2022-023227mtgabs.
Pełny tekst źródłaDennis, John Ojur, Abdullahi Abbas Adam, M. K. M. Ali, Hassan Soleimani, Muhammad Fadhlullah Bin Abd Shukur, K. H. Ibnaouf, O. Aldaghri i in. "Substantial Proton Ion Conduction in Methylcellulose/Pectin/Ammonium Chloride Based Solid Nanocomposite Polymer Electrolytes: Effect of ZnO Nanofiller". Membranes 12, nr 7 (13.07.2022): 706. http://dx.doi.org/10.3390/membranes12070706.
Pełny tekst źródłaGeorge, Sweta Mariam, Debalina Deb, Haijin Zhu, S. Sampath i Aninda J. Bhattacharyya. "Spectroscopic investigations of solvent assisted Li-ion transport decoupled from polymer in a gel polymer electrolyte". Applied Physics Letters 121, nr 22 (28.11.2022): 223903. http://dx.doi.org/10.1063/5.0112647.
Pełny tekst źródłaCaradant, Lea, Nina Verdier, Gabrielle Foran, David Lepage, Arnaud Prébé, David Aymé-Perrot i Mickaël Dollé. "The Influence of Polar Functional Groups in Hot-Melt Extruded Polymer Blend Electrolytes for Solid-State Lithium Batteries". ECS Meeting Abstracts MA2022-01, nr 2 (7.07.2022): 210. http://dx.doi.org/10.1149/ma2022-012210mtgabs.
Pełny tekst źródłaCaradant, Lea, Nina Verdier, Gabrielle Foran, David Lepage, Arnaud Prébé, David Aymé-Perrot i Mickaël Dollé. "The Influence of Polar Functional Groups in Melt-Blended Polymers Used As New Solid Electrolytes for Lithium Batteries." ECS Meeting Abstracts MA2022-02, nr 7 (9.10.2022): 2423. http://dx.doi.org/10.1149/ma2022-0272423mtgabs.
Pełny tekst źródłaRushing, Jeramie C., Anit Gurung i Daniel G. Kuroda. "Relation between microscopic structure and macroscopic properties in polyacrylonitrile-based lithium-ion polymer gel electrolytes". Journal of Chemical Physics 158, nr 14 (14.04.2023): 144705. http://dx.doi.org/10.1063/5.0135631.
Pełny tekst źródłaNti, Frederick, George W. Greene, Haijin Zhu, Patrick C. Howlett, Maria Forsyth i Xiaoen Wang. "Anion effects on the properties of OIPC/PVDF composites". Materials Advances 2, nr 5 (2021): 1683–94. http://dx.doi.org/10.1039/d0ma00992j.
Pełny tekst źródłaWeber, Ryan L., i Mahesh K. Mahanthappa. "Thiol–ene synthesis and characterization of lithium bis(malonato)borate single-ion conducting gel polymer electrolytes". Soft Matter 13, nr 41 (2017): 7633–43. http://dx.doi.org/10.1039/c7sm01738c.
Pełny tekst źródłaBhandary, Rajesh, i Monika Schönhoff. "Polymer effect on lithium ion dynamics in gel polymer electrolytes: Cationic versus acrylate polymer". Electrochimica Acta 174 (sierpień 2015): 753–61. http://dx.doi.org/10.1016/j.electacta.2015.05.145.
Pełny tekst źródłaKim, Young C., Brian L. Chaloux, Debra R. Rolison, Michelle D. Johannes i Megan B. Sassin. "Molecular dynamics study of hydroxide ion diffusion in polymer electrolytes". Electrochemistry Communications 140 (lipiec 2022): 107334. http://dx.doi.org/10.1016/j.elecom.2022.107334.
Pełny tekst źródłaRamya, C. S., i S. Selvasekarapandian. "Spectroscopic studies on ion dynamics of PVP–NH4SCN polymer electrolytes". Ionics 20, nr 12 (4.05.2014): 1681–86. http://dx.doi.org/10.1007/s11581-014-1130-3.
Pełny tekst źródłaBrinkkötter, M., M. Gouverneur, P. J. Sebastião, F. Vaca Chávez i M. Schönhoff. "Spin relaxation studies of Li+ ion dynamics in polymer gel electrolytes". Physical Chemistry Chemical Physics 19, nr 10 (2017): 7390–98. http://dx.doi.org/10.1039/c6cp08756f.
Pełny tekst źródłaChavan, Kanchan, Pallab Barai, Hong-Keun Kim i Venkat Srinivasan. "Decoding the Ceramics Influence in the Composite Electrolytes". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 494. http://dx.doi.org/10.1149/ma2022-024494mtgabs.
Pełny tekst źródłaLi, Guan Min. "Mathematical Model of Transmission Mechanism from Multiphase Composite System". Advanced Materials Research 850-851 (grudzień 2013): 300–303. http://dx.doi.org/10.4028/www.scientific.net/amr.850-851.300.
Pełny tekst źródłaChen, X. Chelsea, Robert L. Sacci, Naresh C. Osti, Madhusudan Tyagi, Beth L. Armstrong, Yangyang Wang, Max J. Palmer i Nancy J. Dudney. "Correction: Study of segmental dynamics and ion transport in polymer–ceramic composite electrolytes by quasi-elastic neutron scattering". Molecular Systems Design & Engineering 4, nr 4 (2019): 983. http://dx.doi.org/10.1039/c9me90023c.
Pełny tekst źródłaLee, Youngju, i Peng Bai. "Overlimiting Currents and Sand’s Time Behaviors in Solid Polymer Electrolytes". ECS Meeting Abstracts MA2022-02, nr 4 (9.10.2022): 485. http://dx.doi.org/10.1149/ma2022-024485mtgabs.
Pełny tekst źródłaAziz, B. Marif, Brza, Hamsan i Kadir. "Employing of Trukhan Model to Estimate Ion Transport Parameters in PVA Based Solid Polymer Electrolyte". Polymers 11, nr 10 (16.10.2019): 1694. http://dx.doi.org/10.3390/polym11101694.
Pełny tekst źródłaLiu, Jie, Lifang Zhang, Yufeng Cao, Zhenkang Wang, Xinyao Xia, Jinqiu Zhou, Xiaowei Shen, Xi Zhou, Tao Qian i Chenglin Yan. "Water-tolerant solid polymer electrolyte with high ion-conductivity for simplified battery manufacturing in air surroundings". Applied Physics Letters 121, nr 15 (10.10.2022): 153905. http://dx.doi.org/10.1063/5.0106897.
Pełny tekst źródłaXue, Xiaoyuan, Long Wan, Wenwen Li, Xueling Tan, Xiaoyu Du i Yongfen Tong. "A Self-Healing Gel Polymer Electrolyte, Based on a Macromolecule Cross-Linked Chitosan for Flexible Supercapacitors". Gels 9, nr 1 (23.12.2022): 8. http://dx.doi.org/10.3390/gels9010008.
Pełny tekst źródłaAhmad, Shahzada, i S. A. Agnihotry. "Effect of nano γ-Al2O3 addition on ion dynamics in polymer electrolytes". Current Applied Physics 9, nr 1 (styczeń 2009): 108–14. http://dx.doi.org/10.1016/j.cap.2007.12.003.
Pełny tekst źródłaSelter, Philipp, Stefanie Grote i Gunther Brunklaus. "Synthesis and7Li Ion Dynamics in Polyarylene-Ethersulfone-Phenylene-Oxide-Based Polymer Electrolytes". Macromolecular Chemistry and Physics 217, nr 23 (10.10.2016): 2584–94. http://dx.doi.org/10.1002/macp.201600211.
Pełny tekst źródłaSrivastava, Neelam, i Manindra Kumar. "Ion dynamics behavior in solid polymer electrolyte". Solid State Ionics 262 (wrzesień 2014): 806–10. http://dx.doi.org/10.1016/j.ssi.2013.10.026.
Pełny tekst źródłaTiwari, Tuhina, Neelam Srivastava i P. C. Srivastava. "Ion Dynamics Study of Potato Starch + Sodium Salts Electrolyte System". International Journal of Electrochemistry 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/670914.
Pełny tekst źródłaSadiq, Niyaz M., Shujahadeen B. Aziz i Mohd F. Z. Kadir. "Development of Flexible Plasticized Ion Conducting Polymer Blend Electrolytes Based on Polyvinyl Alcohol (PVA): Chitosan (CS) with High Ion Transport Parameters Close to Gel Based Electrolytes". Gels 8, nr 3 (2.03.2022): 153. http://dx.doi.org/10.3390/gels8030153.
Pełny tekst źródłaMustapa, Siti Rosnah, Min Min Aung i Marwah Rayung. "Physico-Chemical, Thermal, and Electrochemical Analysis of Solid Polymer Electrolyte from Vegetable Oil-Based Polyurethane". Polymers 13, nr 1 (30.12.2020): 132. http://dx.doi.org/10.3390/polym13010132.
Pełny tekst źródłaChattoraj, Joyjit, Marisa Knappe i Andreas Heuer. "Dependence of Ion Dynamics on the Polymer Chain Length in Poly(ethylene oxide)-Based Polymer Electrolytes". Journal of Physical Chemistry B 119, nr 22 (22.05.2015): 6786–91. http://dx.doi.org/10.1021/jp512734g.
Pełny tekst źródłaVogel, M., i T. Torbrügge. "Ion and polymer dynamics in polymer electrolytes PPO-LiClO4. I. Insights from NMR line-shape analysis". Journal of Chemical Physics 125, nr 5 (7.08.2006): 054905. http://dx.doi.org/10.1063/1.2217945.
Pełny tekst źródłaChen, X. Chelsea, Robert L. Sacci, Naresh C. Osti, Madhusudan Tyagi, Yangyang Wang, Max J. Palmer i Nancy J. Dudney. "Study of segmental dynamics and ion transport in polymer–ceramic composite electrolytes by quasi-elastic neutron scattering". Molecular Systems Design & Engineering 4, nr 2 (2019): 379–85. http://dx.doi.org/10.1039/c8me00113h.
Pełny tekst źródłaHuang, Yage, Xintong Mei i Yunlong Guo. "Segmental and interfacial dynamics quantitatively determine ion transport in solid polymer composite electrolytes". Journal of Applied Polymer Science 139, nr 20 (8.01.2022): 52143. http://dx.doi.org/10.1002/app.52143.
Pełny tekst źródłaBharati, Devesh Chandra, Horesh Kumar i A. L. Saroj. "Chitosan-PEG-NaI based bio-polymer electrolytes: structural, thermal and ion dynamics studies". Materials Research Express 6, nr 12 (22.01.2020): 125360. http://dx.doi.org/10.1088/2053-1591/ab66a3.
Pełny tekst źródłaAziz, Shujahadeen B., Elham M. A. Dannoun, Mohamad A. Brza, Niyaz M. Sadiq, Muaffaq M. Nofal, Wrya O. Karim, Sameerahl I. Al-Saeedi i Mohd F. Z. Kadir. "An Investigation into the PVA:MC:NH4Cl-Based Proton-Conducting Polymer-Blend Electrolytes for Electrochemical Double Layer Capacitor (EDLC) Device Application: The FTIR, Circuit Design and Electrochemical Studies". Molecules 27, nr 3 (2.02.2022): 1011. http://dx.doi.org/10.3390/molecules27031011.
Pełny tekst źródłaVogel, M., i T. Torbrügge. "Ion and polymer dynamics in polymer electrolytes PPO–LiClO4.II. H2 and Li7 NMR stimulated-echo experiments". Journal of Chemical Physics 125, nr 16 (28.10.2006): 164910. http://dx.doi.org/10.1063/1.2358990.
Pełny tekst źródłaNicotera, Isabella, Ernestino Lufrano, Cataldo Simari, Apostolos Enotiadis, Sergio Brutti, Maryam Nojabaee i Brigitta Sievert. "Nanoscale Ionic Materials for Nafion Based Nanocomposites Membranes As Single Lithium-Ion Conducting Polymer Electrolytes for Lithium Sulfur Batteries". ECS Meeting Abstracts MA2022-01, nr 2 (7.07.2022): 229. http://dx.doi.org/10.1149/ma2022-012229mtgabs.
Pełny tekst źródłaZhang, Lei, Haiqi Gao, Lixiang Guan, Yuchao Li i Qian Wang. "Polyzwitterion–SiO2 Double-Network Polymer Electrolyte with High Strength and High Ionic Conductivity". Polymers 15, nr 2 (16.01.2023): 466. http://dx.doi.org/10.3390/polym15020466.
Pełny tekst źródłaLee, Sung-Il, Martina Schömer, Huagen Peng, Kirt A. Page, Daniel Wilms, Holger Frey, Christopher L. Soles i Do Y. Yoon. "Correlations between Ion Conductivity and Polymer Dynamics in Hyperbranched Poly(ethylene oxide) Electrolytes for Lithium-Ion Batteries". Chemistry of Materials 23, nr 11 (14.06.2011): 2685–88. http://dx.doi.org/10.1021/cm103696g.
Pełny tekst źródłaHarrison, Jeffrey S., Dean A. Waldow, Phillip A. Cox, Rajiv Giridharagopal, Marisa Adams, Victoria Richmond, Sevryn Modahl, Megan Longstaff, Rodion Zhuravlev i David S. Ginger. "Noncontact Imaging of Ion Dynamics in Polymer Electrolytes with Time-Resolved Electrostatic Force Microscopy". ACS Nano 13, nr 1 (19.12.2018): 536–43. http://dx.doi.org/10.1021/acsnano.8b07254.
Pełny tekst źródłaBecher, Manuel, Simon Becker, Lukas Hecht i Michael Vogel. "From Local to Diffusive Dynamics in Polymer Electrolytes: NMR Studies on Coupling of Polymer and Ion Dynamics across Length and Time Scales". Macromolecules 52, nr 23 (15.11.2019): 9128–39. http://dx.doi.org/10.1021/acs.macromol.9b01400.
Pełny tekst źródłaBorah, Sandeepan, Jayanta K. Sarmah i M. Deka. "Understanding uptake kinetics and ion dynamics in microporous polymer gel electrolytes reinforced with SiO2 nanofibers". Materials Science and Engineering: B 273 (listopad 2021): 115419. http://dx.doi.org/10.1016/j.mseb.2021.115419.
Pełny tekst źródłaBrinkkötter, Marc, Elena I. Lozinskaya, Denis O. Ponkratov, Yakov Vygodskii, Daniel F. Schmidt, Alexander S. Shaplov i Monika Schönhoff. "Influence of Cationic Poly(ionic liquid) Architecture on the Ion Dynamics in Polymer Gel Electrolytes". Journal of Physical Chemistry C 123, nr 21 (8.05.2019): 13225–35. http://dx.doi.org/10.1021/acs.jpcc.9b03089.
Pełny tekst źródłaDürr, O., W. Dieterich i A. Nitzan. "Coupled ion and network dynamics in polymer electrolytes: Monte Carlo study of a lattice model". Journal of Chemical Physics 121, nr 24 (2004): 12732. http://dx.doi.org/10.1063/1.1825371.
Pełny tekst źródłaSimari, Cataldo, Ernestino Lufrano, Luigi Coppola i Isabella Nicotera. "Composite Gel Polymer Electrolytes Based on Organo-Modified Nanoclays: Investigation on Lithium-Ion Transport and Mechanical Properties". Membranes 8, nr 3 (24.08.2018): 69. http://dx.doi.org/10.3390/membranes8030069.
Pełny tekst źródłaHosseinioun, Ava, Pinchas Nürnberg, Monika Schönhoff, Diddo Diddens i Elie Paillard. "Improved lithium ion dynamics in crosslinked PMMA gel polymer electrolyte". RSC Advances 9, nr 47 (2019): 27574–82. http://dx.doi.org/10.1039/c9ra05917b.
Pełny tekst źródłaBergstrom, Helen K., Kara D. Fong i Bryan D. McCloskey. "The Role of Ion-Correlation in Reducing the Lithium Transference Number in Lithium-Ion Polyelectrolyte Solutions". ECS Meeting Abstracts MA2022-02, nr 3 (9.10.2022): 203. http://dx.doi.org/10.1149/ma2022-023203mtgabs.
Pełny tekst źródłaMongcopa, Katrina Irene S., Daniel A. Gribble, Whitney S. Loo, Madhusudan Tyagi, Scott A. Mullin i Nitash P. Balsara. "Segmental Dynamics Measured by Quasi-Elastic Neutron Scattering and Ion Transport in Chemically Distinct Polymer Electrolytes". Macromolecules 53, nr 7 (31.03.2020): 2406–11. http://dx.doi.org/10.1021/acs.macromol.0c00091.
Pełny tekst źródłaBennington, Peter, Chuting Deng, Daniel Sharon, Michael A. Webb, Juan J. de Pablo, Paul F. Nealey i Shrayesh N. Patel. "Role of solvation site segmental dynamics on ion transport in ethylene-oxide based side-chain polymer electrolytes". Journal of Materials Chemistry A 9, nr 15 (2021): 9937–51. http://dx.doi.org/10.1039/d1ta00899d.
Pełny tekst źródła