Gotowa bibliografia na temat „Polymer Electrolytes - Ion Dynamics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Polymer Electrolytes - Ion Dynamics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Polymer Electrolytes - Ion Dynamics"
Mabuchi, Takuya, Koki Nakajima i Takashi Tokumasu. "Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries". Micromachines 12, nr 9 (26.08.2021): 1012. http://dx.doi.org/10.3390/mi12091012.
Pełny tekst źródłaKumar, Asheesh, Raghunandan Sharma, M. Suresh, Malay K. Das i Kamal K. Kar. "Structural and ion transport properties of lithium triflate/poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolytes". Journal of Elastomers & Plastics 49, nr 6 (4.11.2016): 513–26. http://dx.doi.org/10.1177/0095244316676512.
Pełny tekst źródłaYusof, S. Z., H. J. Woo i A. K. Arof. "Ion dynamics in methylcellulose–LiBOB solid polymer electrolytes". Ionics 22, nr 11 (25.05.2016): 2113–21. http://dx.doi.org/10.1007/s11581-016-1733-y.
Pełny tekst źródłaGaraga, Mounesha N., Sahana Bhattacharyya i Steve G. Greenbaum. "Achieving Enhanced Mobility of Ions in Ionic Liquid-Based Gel Polymer Electrolytes By Incorporating Inorganic Nanofibers for Li-Ion Battery". ECS Meeting Abstracts MA2022-02, nr 2 (9.10.2022): 160. http://dx.doi.org/10.1149/ma2022-022160mtgabs.
Pełny tekst źródłaPeters, Brandon L., Zhou Yu, Paul C. Redfern, Larry A. Curtiss i Lei Cheng. "Effects of Salt Aggregation in Perfluoroether Electrolytes". Journal of The Electrochemical Society 169, nr 2 (1.02.2022): 020506. http://dx.doi.org/10.1149/1945-7111/ac4c7a.
Pełny tekst źródłaPark, Habin, Anthony Engler, Nian Liu i Paul Kohl. "Dynamic Anion Delocalization of Single-Ion Conducting Polymer Electrolyte for High-Performance of Solid-State Lithium Metal Batteries". ECS Meeting Abstracts MA2022-02, nr 3 (9.10.2022): 227. http://dx.doi.org/10.1149/ma2022-023227mtgabs.
Pełny tekst źródłaDennis, John Ojur, Abdullahi Abbas Adam, M. K. M. Ali, Hassan Soleimani, Muhammad Fadhlullah Bin Abd Shukur, K. H. Ibnaouf, O. Aldaghri i in. "Substantial Proton Ion Conduction in Methylcellulose/Pectin/Ammonium Chloride Based Solid Nanocomposite Polymer Electrolytes: Effect of ZnO Nanofiller". Membranes 12, nr 7 (13.07.2022): 706. http://dx.doi.org/10.3390/membranes12070706.
Pełny tekst źródłaGeorge, Sweta Mariam, Debalina Deb, Haijin Zhu, S. Sampath i Aninda J. Bhattacharyya. "Spectroscopic investigations of solvent assisted Li-ion transport decoupled from polymer in a gel polymer electrolyte". Applied Physics Letters 121, nr 22 (28.11.2022): 223903. http://dx.doi.org/10.1063/5.0112647.
Pełny tekst źródłaCaradant, Lea, Nina Verdier, Gabrielle Foran, David Lepage, Arnaud Prébé, David Aymé-Perrot i Mickaël Dollé. "The Influence of Polar Functional Groups in Hot-Melt Extruded Polymer Blend Electrolytes for Solid-State Lithium Batteries". ECS Meeting Abstracts MA2022-01, nr 2 (7.07.2022): 210. http://dx.doi.org/10.1149/ma2022-012210mtgabs.
Pełny tekst źródłaCaradant, Lea, Nina Verdier, Gabrielle Foran, David Lepage, Arnaud Prébé, David Aymé-Perrot i Mickaël Dollé. "The Influence of Polar Functional Groups in Melt-Blended Polymers Used As New Solid Electrolytes for Lithium Batteries." ECS Meeting Abstracts MA2022-02, nr 7 (9.10.2022): 2423. http://dx.doi.org/10.1149/ma2022-0272423mtgabs.
Pełny tekst źródłaRozprawy doktorskie na temat "Polymer Electrolytes - Ion Dynamics"
Shen, Kuan-Hsuan. "Modeling ion conduction through salt-doped polymers: Morphology, ion solvation, and ion correlations". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595422569403378.
Pełny tekst źródłaKidd, Bryce Edwin. "Multiscale Transport and Dynamics in Ion-Dense Organic Electrolytes and Copolymer Micelles". Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82525.
Pełny tekst źródłaPh. D.
Karo, Jaanus. "The Rôle of Side-Chains in Polymer Electrolytes for Batteries and Fuel Cells". Doctoral thesis, Uppsala universitet, Strukturkemi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-100738.
Pełny tekst źródłaShi, Jie. "Ion transport in polymer electrolytes". Thesis, University of St Andrews, 1993. http://hdl.handle.net/10023/15522.
Pełny tekst źródłaSorrie, Graham A. "Liquid polymer electrolytes". Thesis, University of Aberdeen, 1987. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU499826.
Pełny tekst źródłaMcHattie, Gillian S. "Ion transport in liquid crystalline polymer electrolytes". Thesis, University of Aberdeen, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324432.
Pełny tekst źródłaLacey, Matthew James. "Electrodeposited polymer electrolytes for 3D Li-ion microbatteries". Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/348605/.
Pełny tekst źródłaChen, Songela Wenqian. "Modeling ion mobility in solid-state polymer electrolytes". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122534.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 31-32).
We introduce a course-grained model of ion diffusion in a solid-state polymer electrolyte. Among many tunable parameters, we investigate the effect of ion concentration, ion-polymer attraction, and polymer disorder on cation diffusion. For the conditions tested, we find that ion concentration has little effect on diffusion. Polymer disorder creates local variation in behavior, which we call "trapping" (low diffusion) and "free diffusing" (high diffusion) regions. Changing ion-polymer attraction modulates the relative importance of trapping and free diffusing behavior. Using this model, we can continue to investigate how a number of factors affect cation diffusion both mechanistically and numerically, with the end goal of enabling rapid computational material design.
by Songela Wenqian Chen.
S.B.
S.B. Massachusetts Institute of Technology, Department of Chemistry
Maranski, Krzysztof Jerzy. "Polymer electrolytes : synthesis and characterisation". Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3411.
Pełny tekst źródłaHekselman, Aleksandra K. "Crystalline polymer and 3D ceramic-polymer electrolytes for Li-ion batteries". Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/11950.
Pełny tekst źródłaKsiążki na temat "Polymer Electrolytes - Ion Dynamics"
Writer, Beta. Lithium-Ion Batteries: A Machine-Generated Summary of Current Research. Springer, 2019.
Znajdź pełny tekst źródłaCzęści książek na temat "Polymer Electrolytes - Ion Dynamics"
Arya, Anil, Annu Sharma, A. L. Sharma i Vijay Kumar. "Ion Dynamics and Dielectric Relaxation in Polymer Composites". W Polymer Electrolytes and their Composites for Energy Storage/Conversion Devices, 67–97. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003208662-4.
Pełny tekst źródłaScrosati, Bruno. "Lithium Polymer Electrolytes". W Advances in Lithium-Ion Batteries, 251–66. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47508-1_9.
Pełny tekst źródłaMaranas, Janna K. "Solid Polymer Electrolytes". W Dynamics of Soft Matter, 123–43. New York, NY: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0727-0_5.
Pełny tekst źródłaKim, Dong-Won. "CHAPTER 5. Gel Polymer Electrolytes". W Future Lithium-ion Batteries, 102–29. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016124-00102.
Pełny tekst źródłaAlbinsson, I., i B. E. Mellander. "Electrical Relaxation in Polymer Electrolytes". W Fast Ion Transport in Solids, 347–52. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1916-0_20.
Pełny tekst źródłaVondrák, J., M. Sedlaríková, J. Reiter i D. Kašpar. "PMMA Based Gel Polymer Electrolytes". W Materials for Lithium-Ion Batteries, 623–25. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4333-2_57.
Pełny tekst źródłaBruce, Peter G. "Polymer Electrolytes and Intercalation Electrodes : Fundamentals and Applications". W Fast Ion Transport in Solids, 87–107. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1916-0_5.
Pełny tekst źródłaNishi, Yoshio. "Lithium-Ion Secondary Batteries with Gelled Polymer Electrolytes". W Advances in Lithium-Ion Batteries, 233–49. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47508-1_8.
Pełny tekst źródłaJishnu, N. S., M. A. Krishnan, Akhila Das, Neethu T. M. Balakrishnan, Jou-Hyeon Ahn, Fatima M. J. Jabeen i Prasanth Raghavan. "Polymer Clay Nanocomposite Electrolytes for Lithium-Ion Batteries". W Polymer Electrolytes for Energy Storage Devices, 187–217. First edition | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003144793-9.
Pełny tekst źródłaSarma, Prasad V., Jayesh Cherusseri i Sreekanth J. Varma. "Polymer Nanocomposite-Based Solid Electrolytes for Lithium-Ion Batteries". W Polymer Electrolytes for Energy Storage Devices, 81–110. First edition | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003144793-4.
Pełny tekst źródłaStreszczenia konferencji na temat "Polymer Electrolytes - Ion Dynamics"
Tokumasu, Takashi. "Proton Transfer in Polymer Electrolyte Membrane by Molecular Dynamics Method". W ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54963.
Pełny tekst źródłaTokumasu, Takashi, i Taiki Yoshida. "A Molecular Dynamics Study for Diffusivity of Proton in Polymer Electrolyte Membrane". W ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44195.
Pełny tekst źródłaZhou, Xiangyang. "Atomistic Modeling of Conduction and Transport Processes in Micro-Porous Electrodes Containing Nafion Electrolytes". W ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18116.
Pełny tekst źródłaMabuchi, Takuya, i Takashi Tokumasu. "Molecular Dynamics Study of Proton and Water Transport in Nafion Membrane". W ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73084.
Pełny tekst źródłaVenugopal, Vinithra, Hao Zhang i Vishnu-Baba Sundaresan. "A Chemo-Mechanical Constitutive Model for Conducting Polymers". W ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3218.
Pełny tekst źródłaNagpure, Tushar, i Zheng Chen. "Modeling of Ionic Polymer-Metal Composite-Enabled Hydrogen Gas Production". W ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9922.
Pełny tekst źródłaSakai, Kiminori, i Takashi Tokumasu. "Molecular Dynamics Study of Oxygen Permeation Through the Ionomer of PEFC Catalyst Layer". W ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-36020.
Pełny tekst źródłaSadiq, M., Anil Arya i Ashish kumar Yadav Manoj K Singh. "Scheme of Polymer-Ion-clay Interaction and Ion-Ion Interaction In Polymer Nanocomposite Electrolytes Films". W Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-171.
Pełny tekst źródłaOgata, N., K. Sanui, M. Rikukawa, S. Yamada i M. Watanabe. "Super ion conducting polymers for solid polymer electrolytes". W International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835672.
Pełny tekst źródłaZhang, Ruisi, Niloofar Hashemi, Maziar Ashuri i Reza Montazami. "Advanced Gel Polymer Electrolyte for Lithium-Ion Polymer Batteries". W ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18386.
Pełny tekst źródłaRaporty organizacyjne na temat "Polymer Electrolytes - Ion Dynamics"
Arnold, John. Supramolecular Engineering of New Lithium Ion Conducting Polymer Electrolytes. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2001. http://dx.doi.org/10.21236/ada431777.
Pełny tekst źródłaGreenbaum, Steven G. Lithium Ion Transport Across and Between Phase Boundaries in Heterogeneous Polymer Electrolytes, Based on PVdF. Fort Belvoir, VA: Defense Technical Information Center, luty 1998. http://dx.doi.org/10.21236/ada344887.
Pełny tekst źródła