Gotowa bibliografia na temat „Polymer Composites - Inorganic Oxides”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Polymer Composites - Inorganic Oxides”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Polymer Composites - Inorganic Oxides"
Wood, Nathan D., Lisa J. Gillie, David J. Cooke i Marco Molinari. "A Review of Key Properties of Thermoelectric Composites of Polymers and Inorganic Materials". Materials 15, nr 23 (5.12.2022): 8672. http://dx.doi.org/10.3390/ma15238672.
Pełny tekst źródłaRahman, Mohammad Mizanur. "Polyurethane/Zinc Oxide (PU/ZnO) Composite—Synthesis, Protective Property and Application". Polymers 12, nr 7 (11.07.2020): 1535. http://dx.doi.org/10.3390/polym12071535.
Pełny tekst źródłaDeeba, Farah, Kriti Shrivastava, Minal Bafna i Ankur Jain. "Tuning of Dielectric Properties of Polymers by Composite Formation: The Effect of Inorganic Fillers Addition". Journal of Composites Science 6, nr 12 (22.11.2022): 355. http://dx.doi.org/10.3390/jcs6120355.
Pełny tekst źródłaEgorin, Andrei, Eduard Tokar, Anna Matskevich, Nikita Ivanov, Ivan Tkachenko, Tatiana Sokolnitskaya i Larisa Zemskova. "Composite Magnetic Sorbents Based on Iron Oxides in Different Polymer Matrices: Comparison and Application for Removal of Strontium". Biomimetics 5, nr 2 (18.05.2020): 22. http://dx.doi.org/10.3390/biomimetics5020022.
Pełny tekst źródłaAhadzade, Sh M., I. A. Vakulenko i Kh Asgarov. "Factors Influence on Electrophysical Parameters of the Composite Varistors". Science and Transport Progress, nr 1(101) (14.03.2023): 29–36. http://dx.doi.org/10.15802/stp2023/283013.
Pełny tekst źródłaKhayal, Areeba. "A NOVEL ROUTE FOR THE FORMATION OF GAS SENSORS". International journal of multidisciplinary advanced scientific research and innovation 1, nr 6 (16.08.2021): 96–108. http://dx.doi.org/10.53633/ijmasri.2021.1.6.04.
Pełny tekst źródłaUpadhyay, Anjali, i Subramanian Karpagam. "Movement of new direction from conjugated polymer to semiconductor composite polymer nanofiber". Reviews in Chemical Engineering 35, nr 3 (26.03.2019): 351–75. http://dx.doi.org/10.1515/revce-2017-0024.
Pełny tekst źródłaFallah, Mahroo, Kenneth J. D. MacKenzie, John V. Hanna i Samuel J. Page. "Novel photoactive inorganic polymer composites of inorganic polymers with copper(I) oxide nanoparticles". Journal of Materials Science 50, nr 22 (29.07.2015): 7374–83. http://dx.doi.org/10.1007/s10853-015-9295-3.
Pełny tekst źródłaZemskova, Larisa, Andrei Egorin, Eduard Tokar, Vladimir Ivanov i Svetlana Bratskaya. "New Chitosan/Iron Oxide Composites: Fabrication and Application for Removal of Sr2+ Radionuclide from Aqueous Solutions". Biomimetics 3, nr 4 (4.12.2018): 39. http://dx.doi.org/10.3390/biomimetics3040039.
Pełny tekst źródłaHuang, Bo, Yanqiong Li i Wen Zeng. "Application of Metal-Organic Framework-Based Composites for Gas Sensing and Effects of Synthesis Strategies on Gas-Sensitive Performance". Chemosensors 9, nr 8 (14.08.2021): 226. http://dx.doi.org/10.3390/chemosensors9080226.
Pełny tekst źródłaRozprawy doktorskie na temat "Polymer Composites - Inorganic Oxides"
Alfinaikh, Reem. "Preparation and Characterization of Poly(Ethylene Oxide)(MW 35K and 100K)/ Silica Nanoparticle Composites". DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2017. http://digitalcommons.auctr.edu/cauetds/109.
Pełny tekst źródłaBhaway, Sarang M. "Fabrication of Block Copolymer Templated Mesoporous Metal Oxide Composites for Energy Storage Applications". University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1468417723.
Pełny tekst źródłaCarvalho, Thaís. "Preparação e caracterização de compósitos com matriz de poliuretano e híbridos fibrosos modificados com óxido de magnésio hidratado". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/97/97136/tde-20112017-123925/.
Pełny tekst źródłaThe versatility of polyurethanes foams allows its application in numerous industries because of the possibility of obtaining different sets of properties just by changing its basic formulation. A recurrent type of modification is the incorporation of different types of fibers in polyurethane matrices widely studied with the objective of generating composite materials with better mechanical properties than the original matrix. Numerous authors have reported the use of crystalline cellulose as a renewable alternative to fillers and showed that the cellulose used as additive in polymer matrices affect the mechanical properties of the original matrix and, to a lesser extent, influence upon thermal stability of the composite. This work was dedicated to isolate the crystalline cellulose contained in banana fibers by treatment with concentrated acetic acid. The chemical treatments are needed to modify the surface of the material and improve adhesion of the filler to the matrix. In view of the results associated with the thermal stability of the composite polyurethane reinforced with cellulose, sought to synthesize hybrid materials cellulose and MgO.nH2O. It has been observed that even in small quantities, the presence of hydrated magnesium oxide significantly affect the thermal stability of HB 98: 2. thermal studies indicate that the studied composites showed similar behavior to the PU matrix. Studies of the compressive properties of polymeric materials generated showed that the incorporation of HB 98: 2 to PU positively affect the mechanical properties of the material, and the composite PU + HB 98 1: 2 had mechanical performance superior to that of pure matrix.
Thomson, James Burgess. "Structural studies of new inorganic oxides and polymer electrolytes". Thesis, University of St Andrews, 1997. http://hdl.handle.net/10023/15523.
Pełny tekst źródłaKeum, Dong-ki. "Organic-inorganic composites of CaCO3 particles by organic polymer templates". 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/147661.
Pełny tekst źródłaChang, Kaiguo. "Synthesis and characterization of conducting polymer-inorganic composite materials /". View online ; access limited to URI, 2000. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3108646.
Pełny tekst źródłaBrennan, Daniel P. "Small molecule and polymer templating of inorganic materials". Diss., Online access via UMI:, 2006.
Znajdź pełny tekst źródłaHan, Y. "Structural modelling of the organic/inorganic interface in polymer nanotube composites". Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603639.
Pełny tekst źródłaLivingstone, Veronica Jean. "One-Pot In-Situ Synthesis of Conductive Polymer/Metal Oxide Composites". University of Toledo / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=toledo158860469194691.
Pełny tekst źródłaRobertson, Duncan J. "Inorganic organic composite polymer coatings based on functionalised polyhedral oligomeric silsesquioxanes". Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/2155.
Pełny tekst źródłaKsiążki na temat "Polymer Composites - Inorganic Oxides"
Shirō, Kobayashi, i SpringerLink (Online service), red. Polymer Materials: Block-Copolymers, Nanocomposites, Organic/Inorganic Hybrids, Polymethylenes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
Znajdź pełny tekst źródłaBruce, Duncan W. Low-dimensional solids. Hoboken, N.J: Wiley, 2010.
Znajdź pełny tekst źródłaW, Bruce Duncan, O'Hare Dermot i Walton Richard I, red. Low-dimensional solids. Hoboken, N.J: Wiley, 2010.
Znajdź pełny tekst źródłaHasegawa, George. Studies on Porous Monolithic Materials Prepared via Sol–Gel Processes. Tokyo: Springer Japan, 2013.
Znajdź pełny tekst źródłaK, Rohatgi P., red. Biomimetics in materials science: Self-healing, self-lubricating, and self-cleaning materials. New York, NY: Springer, 2012.
Znajdź pełny tekst źródłaNicholas, Leventis, Koebel Matthias M i SpringerLink (Online service), red. Aerogels Handbook. New York, NY: Springer Science+Business Media, LLC, 2011.
Znajdź pełny tekst źródłaLi, Wu, i Qiuju Sun. Inorganic-Whisker-reinforced Polymer Composites. Taylor & Francis Group, 2019.
Znajdź pełny tekst źródłaKalia, Susheel, B. S. Kaith, Sanjay K. Nayak i Smita Mohanty. Polymer Nanocomposites Based on Inorganic and Organic Nanomaterials. Wiley & Sons, Limited, John, 2015.
Znajdź pełny tekst źródłaKalia, Susheel, B. S. Kaith, Sanjay K. Nayak i Smita Mohanty. Polymer Nanocomposites Based on Inorganic and Organic Nanomaterials. Wiley & Sons, Incorporated, John, 2015.
Znajdź pełny tekst źródłaKalia, Susheel, B. S. Kaith, Sanjay K. Nayak i Smita Mohanty. Polymer Nanocomposites Based on Inorganic and Organic Nanomaterials. Wiley & Sons, Incorporated, John, 2015.
Znajdź pełny tekst źródłaCzęści książek na temat "Polymer Composites - Inorganic Oxides"
Khan, Anish, Aftab Aslam Parwaz Khan, Abdullah M. Asiri, Salman A. Khan, Imran Khan i Mohammad Mujahid Ali Khan. "Polymer-Inorganic Nanocomposite and Biosensors". W Electrically Conductive Polymer and Polymer Composites, 47–68. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807918.ch3.
Pełny tekst źródłaNing, Y. P., M. X. Zhao i J. E. Mark. "Some Novel Organic-Inorganic Composites". W Frontiers of Polymer Research, 479–88. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3856-1_53.
Pełny tekst źródłaChaurasia, Sujeet Kumar, Kunwar Vikram, Manish Pratap Singh i Manoj K. Singh. "Hybrid Organic-Inorganic Polymer Composites". W Polymer Electrolytes and their Composites for Energy Storage/Conversion Devices, 43–65. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003208662-3.
Pełny tekst źródłaMoini, Nasrin, Arash Jahandideh i Gary Anderson. "Inorganic Nanocomposite Hydrogels: Present Knowledge and Future Challenge". W Sustainable Polymer Composites and Nanocomposites, 805–53. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05399-4_28.
Pełny tekst źródłaĆirić-Marjanović, Gordana. "Progress in Polyaniline Composites with Transition Metal Oxides". W Fundamentals of Conjugated Polymer Blends, Copolymers and Composites, 119–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119137160.ch2.
Pełny tekst źródłaLiu, Peng. "Polypyrrole/Inorganic Nanocomposites for Supercapacitors". W Fundamentals of Conjugated Polymer Blends, Copolymers and Composites, 419–47. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119137160.ch8.
Pełny tekst źródłaDevaki, Sudha J., i Rajaraman Ramakrishnan. "Nanostructured Semiconducting Polymer Inorganic Hybrid Composites for Opto-Electronic Applications". W Advances in Nanostructured Composites, 352–75. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018] | Series: Advances in nanostructured composites ; volume 2 | “A science publishers book.»: CRC Press, 2019. http://dx.doi.org/10.1201/9780429021718-17.
Pełny tekst źródłaLeao, Alcides Lopes, Bibin Mathew Cherian, Suresh Narine, Mohini Sain, Sivoney Souza i Sabu Thomas. "Applications for Nanocellulose in Polyolefins-Based Composites". W Polymer Nanocomposites Based on Inorganic and Organic Nanomaterials, 215–28. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119179108.ch7.
Pełny tekst źródłaKwon, D., W. R. Schmidt, L. V. Interrante, P. Marchetti i G. Maciel. "Preparation and Microstructure of Organometallic Polymer Derived A1N-BN Composites". W Inorganic and Organometallic Oligomers and Polymers, 191–97. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3214-5_14.
Pełny tekst źródłaBell, Jonathan L., i Waltraud M. Kriven. "Formation of an Iron-Based Inorganic Polymer (Geopolymer)". W Mechanical Properties and Performance of Engineering Ceramics and Composites IV, 301–12. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470584262.ch28.
Pełny tekst źródłaStreszczenia konferencji na temat "Polymer Composites - Inorganic Oxides"
Du, H., S. H. Ng, K. T. Neo, M. Ng, I. S. Altman, S. Chiruvolu, N. Kambe, R. Mosso i K. Drain. "Inorganic-Polymer Nanocomposites for Optical Applications". W ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17088.
Pełny tekst źródłaZieba, Jaroslaw W., Yue Zhang, Paras N. Prasad, Martin K. Casstevens i Ryszard Burzynski. "Sol-gel-processed inorganic oxides: organic polymer composites for second-order nonlinear optical applications". W San Diego '92, redaktor John D. Mackenzie. SPIE, 1992. http://dx.doi.org/10.1117/12.132032.
Pełny tekst źródłaZhang, Yue, Yiping Cui, Chi-Chang J. Wung, Paras N. Prasad i Ryszard Burzynski. "Sol-gel processed novel multicomponent inorganic oxide: organic polymer composites for nonlinear optics". W San Diego, '91, San Diego, CA, redaktor Kenneth D. Singer. SPIE, 1991. http://dx.doi.org/10.1117/12.50723.
Pełny tekst źródłaWellinghoff, S. T., D. P. Nicolella, D. P. Hanson, H. R. Rawls i B. K. Norling. "Photopolymerizable Liquid Crystal Monomer-Oxide Nanoparticle Composites". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39367.
Pełny tekst źródłaSamulionis, V., J. Banys, S. Svirskas, A. Sanchez-Ferrer, R. Mezzenga i T. McNally. "Ultrasonic studies of polymer composites with inorganic nanotubes". W 2013 IEEE International Ultrasonics Symposium (IUS). IEEE, 2013. http://dx.doi.org/10.1109/ultsym.2013.0482.
Pełny tekst źródłaWEN, Z. Y., Z. X. LIN, J. D. CAO, T. ITOH i O. YAMAMOTO. "CHARACTERISTICS OF COMPOSITE POLYMER ELECTROLYTES BASED ON POLY(ETHELYENE OXIDE) AND INORGANIC FIBER". W Proceedings of the 7th Asian Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791979_0060.
Pełny tekst źródłaZharkova, Galina M., i Sergey A. Streltsov. "Electrooptics of Polymer Dispersed Liquid Crystals and Holographic Polymer Dispersed Liquid Crystals Doped Inorganic Oxides Nanoparticles". W 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2018. http://dx.doi.org/10.1109/apeie.2018.8545551.
Pełny tekst źródłaKrishnan, Srivatsava, Prasant Vijayaraghavan i Vishnubaba Sundaresan. "Characterization of Mechanoluminescent Composites and Their Applications for SHM of Polymer Composites". W ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-9078.
Pełny tekst źródłaLova, Paola, i Davide Comoretto. "Label-free vapor selectivity by polymer-inorganic composite photonic crystals sensors". W 9TH INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2018. http://dx.doi.org/10.1063/1.5045959.
Pełny tekst źródłaDantal, B. R., A. Saigal i M. A. Zimmerman. "Polarization Measurements of Molded Liquid Crystal Polymer/Titania Composites". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37558.
Pełny tekst źródła