Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: POLYGENERATION SYSTEMS.

Artykuły w czasopismach na temat „POLYGENERATION SYSTEMS”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „POLYGENERATION SYSTEMS”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Calise, Francesco, i Massimo Dentice D’Accadia. "Simulation of Polygeneration Systems". Energies 9, nr 11 (8.11.2016): 925. http://dx.doi.org/10.3390/en9110925.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Calise, Francesco, Giulio de Notaristefani di Vastogirardi, Massimo Dentice d'Accadia i Maria Vicidomini. "Simulation of polygeneration systems". Energy 163 (listopad 2018): 290–337. http://dx.doi.org/10.1016/j.energy.2018.08.052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Khoshgoftar Manesh, Mohammad Hasan, i Viviani Caroline Onishi. "Energy, Exergy, and Thermo-Economic Analysis of Renewable Energy-Driven Polygeneration Systems for Sustainable Desalination". Processes 9, nr 2 (23.01.2021): 210. http://dx.doi.org/10.3390/pr9020210.

Pełny tekst źródła
Streszczenie:
Reliable production of freshwater and energy is vital for tackling two of the most critical issues the world is facing today: climate change and sustainable development. In this light, a comprehensive review is performed on the foremost renewable energy-driven polygeneration systems for freshwater production using thermal and membrane desalination. Thus, this review is designed to outline the latest developments on integrated polygeneration and desalination systems based on multi-stage flash (MSF), multi-effect distillation (MED), humidification-dehumidification (HDH), and reverse osmosis (RO) technologies. Special attention is paid to innovative approaches for modelling, design, simulation, and optimization to improve energy, exergy, and thermo-economic performance of decentralized polygeneration plants accounting for electricity, space heating and cooling, domestic hot water, and freshwater production, among others. Different integrated renewable energy-driven polygeneration and desalination systems are investigated, including those assisted by solar, biomass, geothermal, ocean, wind, and hybrid renewable energy sources. In addition, recent literature applying energy, exergy, exergoeconomic, and exergoenvironmental analysis is reviewed to establish a comparison between a range of integrated renewable-driven polygeneration and desalination systems.
Style APA, Harvard, Vancouver, ISO itp.
4

Ramadhani, Farah, M. A. Hussain, Hazlie Mokhlis i Oon Erixno. "Solid Oxide Fuel Cell-Based Polygeneration Systems in Residential Applications: A Review of Technology, Energy Planning and Guidelines for Optimizing the Design". Processes 10, nr 10 (19.10.2022): 2126. http://dx.doi.org/10.3390/pr10102126.

Pełny tekst źródła
Streszczenie:
Solid oxide fuel cells are an emerging energy conversion technology suitable for high-temperature power generation with proper auxiliary heat. Combining SOFCs and polygeneration has produced practical applications for modern energy system designs. Even though many researchers have reviewed these systems’ technologies, opportunities and challenges, reviews regarding the optimal strategy for designing and operating the systems are limited. Polygeneration is more complicated than any other energy generation type due to its ability to generate many types of energy from various prime movers. Moreover, integration with other applications, such as vehicle charging and fueling stations, increases the complication in making the system optimally serve the loads. This study elaborates on the energy planning and guidelines for designing a polygeneration system, especially for residential applications. The review of polygeneration technologies also aligns with the current research trend of developing green technology for modern and smart homes in residential areas. The proposed guideline is expected to solve the complication in other applications and technologies and design the polygeneration system optimally.
Style APA, Harvard, Vancouver, ISO itp.
5

Wang, Lingmei, Zheng Li i Weidou Ni. "Emergy evaluation of polygeneration systems". Frontiers of Energy and Power Engineering in China 1, nr 2 (maj 2007): 223–27. http://dx.doi.org/10.1007/s00000-007-0030-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Murugan, S., i Bohumil Horák. "Tri and polygeneration systems - A review". Renewable and Sustainable Energy Reviews 60 (lipiec 2016): 1032–51. http://dx.doi.org/10.1016/j.rser.2016.01.127.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Dolotovsky, Igor, i Evgeni Larin. "Polygeneration technology and equipment for energy and water supply systems of oil and gas enterprises". Energy Safety and Energy Economy 6 (grudzień 2021): 11–19. http://dx.doi.org/10.18635/2071-2219-2021-6-11-19.

Pełny tekst źródła
Streszczenie:
A novel polygeneration technology and equipment concept has been suggested for energy and water supply systems of oil and gas enterprises. It was created in order to enhance opportunities of mutual integration of power and manufacturing systems using recuperation and recycling. As an example, we have described a system which incorporates modules for combined energy resource and water generation as well as wastewater and low pressure hydrocarbon gas recycling. Feasibility of polygeneration and mutual integration was assessed with use of a multi-criterion concidering efficiency and effectiveness.
Style APA, Harvard, Vancouver, ISO itp.
8

Homa, Maksymilian, Anna Pałac, Maciej Żołądek i Rafał Figaj. "Small-Scale Hybrid and Polygeneration Renewable Energy Systems: Energy Generation and Storage Technologies, Applications, and Analysis Methodology". Energies 15, nr 23 (2.12.2022): 9152. http://dx.doi.org/10.3390/en15239152.

Pełny tekst źródła
Streszczenie:
The energy sector is nowadays facing new challenges, mainly in the form of a massive shifting towards renewable energy sources as an alternative to fossil fuels and a diffusion of the distributed generation paradigm, which involves the application of small-scale energy generation systems. In this scenario, systems adopting one or more renewable energy sources and capable of producing several forms of energy along with some useful substances, such as fresh water and hydrogen, are a particularly interesting solution. A hybrid polygeneration system based on renewable energy sources can overcome operation problems regarding energy systems where only one energy source is used (solar, wind, biomass) and allows one to use an all-in-one integrated systems in order to match the different loads of a utility. From the point of view of scientific literature, medium- and large-scale systems are the most investigated; nevertheless, more and more attention has also started to be given to small-scale layouts and applications. The growing diffusion of distributed generation applications along with the interest in multipurpose energy systems based on renewables and capable of matching different energy demands create the necessity of developing an overview on the topic of small-scale hybrid and polygeneration systems. Therefore, this paper provides a comprehensive review of the technology, operation, performance, and economical aspects of hybrid and polygeneration renewable energy systems in small-scale applications. In particular, the review presents the technologies used for energy generation from renewables and the ones that may be adopted for energy storage. A significant focus is also given to the adoption of renewable energy sources in hybrid and polygeneration systems, designs/modeling approaches and tools, and main methodologies of assessment. The review shows that investigations on the proposed topic have significant potential for expansion from the point of view of system configuration, hybridization, and applications.
Style APA, Harvard, Vancouver, ISO itp.
9

Liu, Pei, Dimitrios I. Gerogiorgis i Efstratios N. Pistikopoulos. "Modeling and optimization of polygeneration energy systems". Catalysis Today 127, nr 1-4 (30.09.2007): 347–59. http://dx.doi.org/10.1016/j.cattod.2007.05.024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kasaeian, Alibakhsh, Evangelos Bellos, Armin Shamaeizadeh i Christos Tzivanidis. "Solar-driven polygeneration systems: Recent progress and outlook". Applied Energy 264 (kwiecień 2020): 114764. http://dx.doi.org/10.1016/j.apenergy.2020.114764.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Raggio, Martina, Carlo Alberto Niccolini Marmont Du Haut Champ, Tommaso Reboli, Paolo Silvestri i Mario Luigi Ferrari. "Energy management and load profile optimisation of 10 kWh BESS integrated into a Smart Polygeneration Grid subnetwork". E3S Web of Conferences 414 (2023): 03008. http://dx.doi.org/10.1051/e3sconf/202341403008.

Pełny tekst źródła
Streszczenie:
Smart Polygeneration Grids integrate different prime movers, such as traditional generators, renewable energy sources and energy storage systems to locally supply electrical and thermal power to achieve high conversion efficiencies and increase self-consumption. Integrating different energy systems poses some challenges on the plant Energy Management Systems (EMS), which must accommodate different operational requirements while following the electrical and thermal loads. Battery Energy Storage Systems (BESSs) can provide additional flexibility to the system. This paper intends to evaluate the impact of integrating a Ni-Zn-based BESS into an existing cogeneration plant through a dedicated sensitivity analysis over the operative characteristics of the BESS itself (maximum power and capacity). The IES LAB of the Savona’s Campus already contains different energy systems: a cogenerative micro gas turbine, a heat-pump, solar thermal panels and two thermal energy storage systems that provide electricity and thermal power to the Smart Polygeneration Grid of the Campus. A new developed energy scheduler accommodates the integration of the new battery and meets the electrical and thermal demands. The aim is to demonstrate that integrating the BESS provides additional benefits in the system management and can reduce fuel usage and OPEX.
Style APA, Harvard, Vancouver, ISO itp.
12

Chen, Yang, Thomas A. Adams i Paul I. Barton. "Optimal Design and Operation of Static Energy Polygeneration Systems". Industrial & Engineering Chemistry Research 50, nr 9 (4.05.2011): 5099–113. http://dx.doi.org/10.1021/ie101568v.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Chen, Yang, Thomas A. Adams i Paul I. Barton. "Optimal Design and Operation of Flexible Energy Polygeneration Systems". Industrial & Engineering Chemistry Research 50, nr 8 (20.04.2011): 4553–66. http://dx.doi.org/10.1021/ie1021267.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Sy, Charlle L., Kathleen B. Aviso, Aristotle T. Ubando i Raymond R. Tan. "Target-oriented robust optimization of polygeneration systems under uncertainty". Energy 116 (grudzień 2016): 1334–47. http://dx.doi.org/10.1016/j.energy.2016.06.057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Narvaez, A., D. Chadwick i L. Kershenbaum. "Small-medium scale polygeneration systems: Methanol and power production". Applied Energy 113 (styczeń 2014): 1109–17. http://dx.doi.org/10.1016/j.apenergy.2013.08.065.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Tan, Raymond R., Kathleen B. Aviso, Dominic C. Y. Foo, Jui-Yuan Lee i Aristotle T. Ubando. "Optimal synthesis of negative emissions polygeneration systems with desalination". Energy 187 (listopad 2019): 115953. http://dx.doi.org/10.1016/j.energy.2019.115953.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Rong, Aiying, i Yan Su. "Polygeneration systems in buildings: A survey on optimization approaches". Energy and Buildings 151 (wrzesień 2017): 439–54. http://dx.doi.org/10.1016/j.enbuild.2017.06.077.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Hernández, J. A., D. Colorado, O. Cortés-Aburto, Y. El Hamzaoui, V. Velazquez i B. Alonso. "Inverse neural network for optimal performance in polygeneration systems". Applied Thermal Engineering 50, nr 2 (luty 2013): 1399–406. http://dx.doi.org/10.1016/j.applthermaleng.2011.12.041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Farhat, Karim, i Stefan Reichelstein. "Economic value of flexible hydrogen-based polygeneration energy systems". Applied Energy 164 (luty 2016): 857–70. http://dx.doi.org/10.1016/j.apenergy.2015.12.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Rokni, Marvin M. "Power to Hydrogen Through Polygeneration Systems Based on Solid Oxide Cell Systems". Energies 12, nr 24 (16.12.2019): 4793. http://dx.doi.org/10.3390/en12244793.

Pełny tekst źródła
Streszczenie:
This study presents the design and analysis of a novel plant based on reversible solid oxide cells driven by wind turbines and integrated with district heating, absorption chillers and water distillation. The main goal is produce hydrogen from excess electricity generated by the wind turbines. The proposed design recovers the waste heat to generate cooling, freshwater and heating. The different plant designs proposed here make it possible to alter the production depending on the demand. Further, the study uses solar energy to generate steam and regulate the heat production for the district heating. The study shows that the plant is able to produce hydrogen at a rate of about 2200 kg/day and the hydrogen production efficiency of the plant reaches about 39%. The total plant efficiency (energy efficiency) will be close to 47% when heat, cool and freshwater are accounted for. Neglecting the heat input through solar energy to the system, then hydrogen production efficiency will be about 74% and the total plant efficiency will be about 100%. In addition, the study analyses the plant performance versus wind velocity in terms of heating, cooling and freshwater generation.
Style APA, Harvard, Vancouver, ISO itp.
21

Bartolucci, Lorenzo, Enrico Bocci, Stefano Cordiner, Emanuele De Maina, Francesco Lombardi, Vera Marcantonio, Pietro Mele, Vincenzo Mulone i Davide Sorino. "Biomass Polygeneration System for the Thermal Conversion of Softwood Waste into Hydrogen and Drop-In Biofuels". Energies 16, nr 3 (25.01.2023): 1286. http://dx.doi.org/10.3390/en16031286.

Pełny tekst źródła
Streszczenie:
In order to keep the +1.5 °C over-temperature, previously predicted with high confidence by IPPC Sixth Assessment, as minimal as feasible, it is more than vital to achieve a low-emission energy system. Polygeneration systems based on thermochemical processes involve biomass conversion in multi-output of bioenergy carriers and chemicals. Due to reduced energy input and input/output diversification, polygeneration energy systems are considered interesting pathways that can increase competitiveness of biomass-derived products. The proposed route of fast pyrolysis, sorption-enhanced biochar gasification and crude bio-oil hydrodeoxygenation to produce drop-in biofuel and hydrogen is examined. Both kinetic and equilibrium approaches were implemented in Aspen Plus to take into account the effect of the major operating parameters on the process performance and then validated against the literature data. Results show how the process integration leads to improved mass conversion yield and increases overall energy efficiency up to 10%-points, reaching the maximum value of 75%. Among the various parameters investigated, pyrolysis temperature influences mainly the products distribution while Steam/Biochar and Sorbent/Biochar affect the energy conversion efficiency.
Style APA, Harvard, Vancouver, ISO itp.
22

Zhang, Jianyun, Zhiwei Yang, Linwei Ma i Weidou Ni. "Exergy Analysis of Coal-Based Series Polygeneration Systems for Methanol and Electricity Co-Production". Molecules 26, nr 21 (4.11.2021): 6673. http://dx.doi.org/10.3390/molecules26216673.

Pełny tekst źródła
Streszczenie:
This paper quantifies the exergy losses of coal-based series polygeneration systems and evaluates the potential efficiency improvements that can be realized by applying advanced technologies for gasification, methanol synthesis, and combined cycle power generation. Exergy analysis identified exergy losses and their associated causes from chemical and physical processes. A new indicator was defined to evaluate the potential gain from minimizing exergy losses caused by physical processes—the degree of perfection of the system’s thermodynamic performance. The influences of a variety of advanced technical solutions on exergy improvement were analyzed and compared. It was found that the overall exergy loss of a series polygeneration system can be reduced significantly, from 57.4% to 48.9%, by applying all the advanced technologies selected. For gasification, four advanced technologies were evaluated, and the largest reduction in exergy loss (about 2.5 percentage points) was contributed by hot gas cleaning, followed by ion transport membrane technology (1.5 percentage points), slurry pre-heating (0.91 percentage points), and syngas heat recovery (0.6 percentage points). For methanol synthesis, partial shift technology reduced the overall exergy loss by about 1.4 percentage points. For power generation, using a G-class gas turbine decreased the overall exergy loss by about 1.6 percentage points.
Style APA, Harvard, Vancouver, ISO itp.
23

Pantsyrnaya, T. V., V. A. Parabin i A. V. Dyakov. "TRIGENERATION AS A WAY OF ENERGY EFFICIENCY IMPROVEMENT REVIEW ARTICLE". Strategic decisions and risk management, nr 6 (25.10.2014): 82–87. http://dx.doi.org/10.17747/2078-8886-2013-6-82-87.

Pełny tekst źródła
Streszczenie:
The overview of current scientific literature on one of the key aspects of the development of the energy sector is presented, it is the increase of the efficiency of energy systems. The ability of cogeneration and trigeneration systems to increase energy efficiency of power stations, supermarkets, shopping centers, airports, etc. was demonstrated. In addition, it was shown that these systems have a high potential for reducing greenhouse gas emissions. The examples of polygeneration systems and ways to optimize them by improving techno-economic parameters were also demonstrated.
Style APA, Harvard, Vancouver, ISO itp.
24

Hao, Yan Hong, i Jie Feng. "Exergoeconomic Analysis of Parallel Polygeneration System with CO-Riched Gas once through". Applied Mechanics and Materials 229-231 (listopad 2012): 2671–79. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.2671.

Pełny tekst źródła
Streszczenie:
Polygeneration energy systems have been widely accepted because of their superiority over conventional stand-alone plants in energy efficiency and emissions control. Coal-based polygeneration system, especially producing methanol and electricity, will play an important role in Chinese sustainable developing energy system. Researches indicate that the parallel polygeneration system producing methanol and electricity with CO-riched gas once through (PCGOT) has higher comprehensive profitability and higher reliability, but the systemic and objective evaluation to PCGOT is lacking. In this paper, the matrix mode exergoeconomic method is adopted to analyze the PCGOT. Some indices, such as exergy cost coefficient, unit exergoeconomic cost, cost difference and exergoeconomic coefficient, etc. are calculated and analyzed by using exergoeconomics theory. Based on the analysis, the direction for further improvement is pointed out, and the energy flows with different qualities in different parts of system are given the rationally fixed prices. The calculated electricity cost is 0.22RMB/ (kW•h) and methanol cost 1118RMB/t while coal price is 500 RMB/t. In addition, the coal price sensitivity analysis is conducted, the results show that when the coal price reaches 800RMB/t, the electricity cost is higher than Shanxi province average on-grid power tariff 0.304RMB/ (kW•h) in 2011, when the coal price reaches 1000RMB/t, the methanol cost is higher than methanol factory prices 2000RMB/t at present.
Style APA, Harvard, Vancouver, ISO itp.
25

Cabral, Charlette, Viknesh Andiappan, Kathleen Aviso i Raymond Tan. "Equipment size selection for optimizing polygeneration systems with reliability aspects". Energy 234 (listopad 2021): 121302. http://dx.doi.org/10.1016/j.energy.2021.121302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Giwa, Adewale, Ahmed Yusuf, Abdallah Dindi i Hammed Abiodun Balogun. "Polygeneration in desalination by photovoltaic thermal systems: A comprehensive review". Renewable and Sustainable Energy Reviews 130 (wrzesień 2020): 109946. http://dx.doi.org/10.1016/j.rser.2020.109946.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Wu, Handong, Lin Gao, Hongguang Jin i Sheng Li. "Low-energy-penalty principles of CO2 capture in polygeneration systems". Applied Energy 203 (październik 2017): 571–81. http://dx.doi.org/10.1016/j.apenergy.2017.06.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Y, Rong A., Su Y i Lahdelma R. "Review of optimization techniques of polygeneration systems for building applications". IOP Conference Series: Earth and Environmental Science 40 (sierpień 2016): 012026. http://dx.doi.org/10.1088/1755-1315/40/1/012026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Wu, Wei, Rasa Supankanok, Walairat Chandra-Ambhorn i Muhammad Ikhsan Taipabu. "Novel CO2-negative design of palm oil-based polygeneration systems". Renewable Energy 203 (luty 2023): 622–33. http://dx.doi.org/10.1016/j.renene.2022.12.103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Liu, Pei, Efstratios N. Pistikopoulos i Zheng Li. "A mixed-integer optimization approach for polygeneration energy systems design". Computers & Chemical Engineering 33, nr 3 (marzec 2009): 759–68. http://dx.doi.org/10.1016/j.compchemeng.2008.08.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Collazos, Andrés, François Maréchal i Conrad Gähler. "Predictive optimal management method for the control of polygeneration systems". Computers & Chemical Engineering 33, nr 10 (październik 2009): 1584–92. http://dx.doi.org/10.1016/j.compchemeng.2009.05.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Liu, Pei, Efstratios N. Pistikopoulos i Zheng Li. "A multi-objective optimization approach to polygeneration energy systems design". AIChE Journal 56, nr 5 (1.10.2009): 1218–34. http://dx.doi.org/10.1002/aic.12058.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Wu, Wei, Lei Zheng, Bin Shi i Po-Chih Kuo. "Energy and exergy analysis of MSW-based IGCC power/polygeneration systems". Energy Conversion and Management 238 (czerwiec 2021): 114119. http://dx.doi.org/10.1016/j.enconman.2021.114119.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Pina, Eduardo A., Miguel A. Lozano, José C. Ramos i Luis M. Serra. "Tackling thermal integration in the synthesis of polygeneration systems for buildings". Applied Energy 269 (lipiec 2020): 115115. http://dx.doi.org/10.1016/j.apenergy.2020.115115.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Menon, Ramanunni P., Mario Paolone i François Maréchal. "Study of optimal design of polygeneration systems in optimal control strategies". Energy 55 (czerwiec 2013): 134–41. http://dx.doi.org/10.1016/j.energy.2013.03.070.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Chen, Yang, Xiang Li, Thomas A. Adams i Paul I. Barton. "Decomposition strategy for the global optimization of flexible energy polygeneration systems". AIChE Journal 58, nr 10 (19.12.2011): 3080–95. http://dx.doi.org/10.1002/aic.13708.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Hosan, Shahadat, Md Matiar Rahman, Shamal Chandra Karmaker i Bidyut Baran Saha. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion". Energy 267 (marzec 2023): 126601. http://dx.doi.org/10.1016/j.energy.2022.126601.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Pimentel, Jean, Ákos Orosz, Kathleen B. Aviso, Raymond R. Tan i Ferenc Friedler. "Conceptual Design of a Negative Emissions Polygeneration Plant for Multiperiod Operations Using P-Graph". Processes 9, nr 2 (27.01.2021): 233. http://dx.doi.org/10.3390/pr9020233.

Pełny tekst źródła
Streszczenie:
Reduction of CO2 emissions from industrial facilities is of utmost importance for sustainable development. Novel process systems with the capability to remove CO2 will be useful for carbon management in the future. It is well-known that major determinants of performance in process systems are established during the design stage. Thus, it is important to employ a systematic tool for process synthesis. This work approaches the design of polygeneration plants with negative emission technologies (NETs) by means of the graph-theoretic approach known as the P-graph framework. As a case study, a polygeneration plant is synthesized for multiperiod operations. Optimal and alternative near-optimal designs in terms of profit are identified, and the influence of network structure on CO2 emissions is assessed for five scenarios. The integration of NETs is considered during synthesis to further reduce carbon footprint. For the scenario without constraint on CO2 emissions, 200 structures with profit differences up to 1.5% compared to the optimal design were generated. The best structures and some alternative designs are evaluated and compared for each case. Alternative solutions prove to have additional practical features that can make them more desirable than the nominal optimum, thus demonstrating the benefits of the analysis of near-optimal solutions in process design.
Style APA, Harvard, Vancouver, ISO itp.
39

Gesteira, Luis Gabriel, i Javier Uche. "A Novel Polygeneration System Based on a Solar-Assisted Desiccant Cooling System for Residential Buildings: An Energy and Environmental Analysis". Sustainability 14, nr 6 (15.03.2022): 3449. http://dx.doi.org/10.3390/su14063449.

Pełny tekst źródła
Streszczenie:
This work aims to design and dynamically simulate a polygeneration system that integrates a solar-assisted desiccant cooling system for residential applications as an alternative to vapor compression systems. The overall plant layout supplies electricity, space heating and cooling, domestic hot water, and freshwater for a single-family townhouse located in the city of Almería in Spain. The leading technologies used in the system are photovoltaic/thermal collectors, reverse osmosis, and desiccant air conditioning. The system model was developed and accurately simulated in the TRNSYS environment for a 1-year simulation with a 5-min time step. Design optimization was carried out to investigate the system’s best configuration. The optimal structure showed a satisfactory total annual energy efficiency in solar collectors of about 0.35 and about 0.47 for desiccant air conditioning. Coverage of electricity, space heating and cooling, domestic hot water, and freshwater was 104.1%, 87.01%, 97.98%, 96.05 %, and 100 %, respectively. Furthermore, significant ratios for primary energy saving, 98.62%, and CO2 saving, 97.17%, were achieved. The users’ thermal comfort level was satisfactory over the entire year. Finally, a comparison with an alternative coastal site was performed to extend the polygeneration system’s applicability.
Style APA, Harvard, Vancouver, ISO itp.
40

Kofler, René, i Lasse Røngaard Clausen. "Wheat straw based polygeneration systems integrating the electricity, heating and transport sector". Smart Energy 2 (maj 2021): 100015. http://dx.doi.org/10.1016/j.segy.2021.100015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Ngan, Sue Lin, Bing Shen How, Sin Yong Teng, Wei Dong Leong, Adrian Chun Minh Loy, Puan Yatim, Michael Angelo B. Promentilla i Hon Loong Lam. "A hybrid approach to prioritize risk mitigation strategies for biomass polygeneration systems". Renewable and Sustainable Energy Reviews 121 (kwiecień 2020): 109679. http://dx.doi.org/10.1016/j.rser.2019.109679.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Liu, Pei, Efstratios N. Pistikopoulos i Zheng Li. "Decomposition Based Stochastic Programming Approach for Polygeneration Energy Systems Design under Uncertainty". Industrial & Engineering Chemistry Research 49, nr 7 (7.04.2010): 3295–305. http://dx.doi.org/10.1021/ie901490g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Menon, Ramanunni P., François Maréchal i Mario Paolone. "Intra-day electro-thermal model predictive control for polygeneration systems in microgrids". Energy 104 (czerwiec 2016): 308–19. http://dx.doi.org/10.1016/j.energy.2016.03.081.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Bianco, Giovanni, Barbara Bonvini, Stefano Bracco, Federico Delfino, Paola Laiolo i Giorgio Piazza. "Key Performance Indicators for an Energy Community Based on Sustainable Technologies". Sustainability 13, nr 16 (6.08.2021): 8789. http://dx.doi.org/10.3390/su13168789.

Pełny tekst źródła
Streszczenie:
As reported in the “Clean energy for all Europeans package” set by the EU, a sustainable transition from fossil fuels towards cleaner energy is necessary to improve the quality of life of citizens and the livability in cities. The exploitation of renewable sources, the improvement of energy performance in buildings and the need for cutting-edge national energy and climate plans represent important and urgent topics to be faced in order to implement the sustainability concept in urban areas. In addition, the spread of polygeneration microgrids and the recent development of energy communities enable a massive installation of renewable power plants, high-performance small-size cogeneration units, and electrical storage systems; moreover, properly designed local energy production systems make it possible to optimize the exploitation of green energy sources and reduce both energy supply costs and emissions. In the present paper, a set of key performance indicators is introduced in order to evaluate and compare different energy communities both from a technical and environmental point of view. The proposed methodology was used in order to assess and compare two sites characterized by the presence of sustainable energy infrastructures: the Savona Campus of the University of Genoa in Italy, where a polygeneration microgrid has been in operation since 2014 and new technologies will be installed in the near future, and the SPEED2030 District, an urban area near the Campus where renewable energy power plants (solar and wind), cogeneration units fed by hydrogen and storage systems are planned to be installed.
Style APA, Harvard, Vancouver, ISO itp.
45

Bruno, J. C., i A. Coronas. "Distributed Generation of Energy Using Micro Gas Turbines. Polygeneration Systems and Fuel Flexibility". Renewable Energy and Power Quality Journal 1, nr 02 (kwiecień 2004): 9–16. http://dx.doi.org/10.24084/repqj02.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Pinto, Edwin S., Luis M. Serra i Ana Lázaro. "Evaluation of methods to select representative days for the optimization of polygeneration systems". Renewable Energy 151 (maj 2020): 488–502. http://dx.doi.org/10.1016/j.renene.2019.11.048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Atienza-Márquez, Antonio, Dereje S. Ayou, Joan Carles Bruno i Alberto Coronas. "Energy polygeneration systems based on LNG-regasification: Comprehensive overview and techno-economic feasibility". Thermal Science and Engineering Progress 20 (grudzień 2020): 100677. http://dx.doi.org/10.1016/j.tsep.2020.100677.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Salkuyeh, Yaser Khojasteh, i Thomas A. Adams. "A new power, methanol, and DME polygeneration process using integrated chemical looping systems". Energy Conversion and Management 88 (grudzień 2014): 411–25. http://dx.doi.org/10.1016/j.enconman.2014.08.039.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Narvaez, A., D. Chadwick i L. Kershenbaum. "Performance of small-medium scale polygeneration systems for dimethyl ether and power production". Energy 188 (grudzień 2019): 116058. http://dx.doi.org/10.1016/j.energy.2019.116058.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Ryabov, G. A., O. M. Folomeev, D. A. Sankin i D. A. Melnikov. "HYDRODYNAMICS OF INTERCONNECTED REACTORS FOR POLYGENERATION SYSTEMS AND CHEMICAL LOOPING COMBUSTION AND GASIFICATION". JP Journal of Heat and Mass Transfer 13, nr 1 (23.12.2015): 1–22. http://dx.doi.org/10.17654/hm013010001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii