Gotowa bibliografia na temat „Polycomb complex”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Polycomb complex”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Polycomb complex"
Strutt, H., i R. Paro. "The polycomb group protein complex of Drosophila melanogaster has different compositions at different target genes." Molecular and Cellular Biology 17, nr 12 (grudzień 1997): 6773–83. http://dx.doi.org/10.1128/mcb.17.12.6773.
Pełny tekst źródłaChiang, A., M. B. O'Connor, R. Paro, J. Simon i W. Bender. "Discrete Polycomb-binding sites in each parasegmental domain of the bithorax complex". Development 121, nr 6 (1.06.1995): 1681–89. http://dx.doi.org/10.1242/dev.121.6.1681.
Pełny tekst źródłaDe, Sandip, Natalie D. Gehred, Miki Fujioka, Fountane W. Chan, James B. Jaynes i Judith A. Kassis. "Defining the Boundaries of Polycomb Domains in Drosophila". Genetics 216, nr 3 (18.09.2020): 689–700. http://dx.doi.org/10.1534/genetics.120.303642.
Pełny tekst źródłaSeong, Ihn Sik, Juliana M. Woda, Ji-Joon Song, Alejandro Lloret, Priyanka D. Abeyrathne, Caroline J. Woo, Gillian Gregory i in. "Huntingtin facilitates polycomb repressive complex 2". Human Molecular Genetics 19, nr 4 (23.11.2009): 573–83. http://dx.doi.org/10.1093/hmg/ddp524.
Pełny tekst źródłaMohd-Sarip, Adone, Jan A. van der Knaap, Claire Wyman, Roland Kanaar, Paul Schedl i C. Peter Verrijzer. "Architecture of a Polycomb Nucleoprotein Complex". Molecular Cell 24, nr 1 (październik 2006): 91–100. http://dx.doi.org/10.1016/j.molcel.2006.08.007.
Pełny tekst źródłaIwata, Shintaro, Hisanori Takenobu, Hajime Kageyama, Haruhiko Koseki, Takeshi Ishii, Atsuko Nakazawa, Shin-ichiro Tatezaki, Akira Nakagawara i Takehiko Kamijo. "Polycomb group molecule PHC3 regulates polycomb complex composition and prognosis of osteosarcoma". Cancer Science 101, nr 7 (7.04.2010): 1646–52. http://dx.doi.org/10.1111/j.1349-7006.2010.01586.x.
Pełny tekst źródłaAli, Janann Y., i Welcome Bender. "Cross-Regulation among the Polycomb Group Genes in Drosophila melanogaster". Molecular and Cellular Biology 24, nr 17 (1.09.2004): 7737–47. http://dx.doi.org/10.1128/mcb.24.17.7737-7747.2004.
Pełny tekst źródłaIragavarapu, Akhil Gargey, Liqi Yao i Vignesh Kasinath. "Structural insights into the interactions of Polycomb Repressive Complex 2 with chromatin". Biochemical Society Transactions 49, nr 6 (8.11.2021): 2639–53. http://dx.doi.org/10.1042/bst20210450.
Pełny tekst źródłaLo, Stanley M., Nitin K. Ahuja i Nicole J. Francis. "Polycomb Group Protein Suppressor 2 of Zeste Is a Functional Homolog of Posterior Sex Combs". Molecular and Cellular Biology 29, nr 2 (3.11.2008): 515–25. http://dx.doi.org/10.1128/mcb.01044-08.
Pełny tekst źródłaLaJeunesse, D., i A. Shearn. "E(z): a polycomb group gene or a trithorax group gene?" Development 122, nr 7 (1.07.1996): 2189–97. http://dx.doi.org/10.1242/dev.122.7.2189.
Pełny tekst źródłaRozprawy doktorskie na temat "Polycomb complex"
Preissner, Tanja Stephanie. "The Polycomb-repressive complex 2 in X-inactivation". Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445872.
Pełny tekst źródłaCourel, María F. (María Federica). "The function of E2F6 in the Polycomb complex". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/86281.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references.
The E2F family of transcription factors are known cell cycle regulators that function at the G1/S transition. Unlike other E2Fs, E2F6 does not activate transcription and is not regulated by pocket protein binding. Instead, this protein appears to repress transcription through the recruitment of the Polycomb Group (PcG) complex. This complex is responsible for the maintenance of Hox gene expression patterns during development and thus ensures the correct anterior-posterior segmentation of the embryo. Genetic ablation of PcG proteins leads to posterior transformations of the axial skeleton as well as other developmental abnormalities such as hematopoietic, cerebellar and smooth muscle defects. The PcG complex has been implicated in cell cycle control since several of its members, including the oncoprotein Bmi 1, appear to repress the transcription of p1 6INK4A and pI 9 ARF. In order to determine the biological function of E2F6, we have generated and characterized E2f6'- mice and mouse embryonic fibroblasts (MEFs). The mutant mice are viable and survive into adulthood with similar lifespan as their littermate controls. Furthermore, the E2f6 null MEFs are indistinguishable from wild-type MEFs in asynchronous proliferation, cell cycle re-entry from quiescence, senescence and E2F target genes expression levels. These findings suggest that E2F6 does not play a major role in cell cycle control or that its function can be compensated by the action of other factors. In fact, preliminary results from combined loss of E2f6 and Bmil suggest that E2F6 may take part in the Bmi 1-mediated control of the cell cycle. Furthermore, we found that the loss of E2F6 results in posterior axial skeleton transformations that are reminiscent of the Bmil-deficient mice defects. The study of the E2f6;Bmil compound mutant mice revealed a dosage-dependent synergism between E2F6 and Bmi 1. These results indicate that E2F6 participates in segmentation during murine development. As a whole, our work has provided proof that E2F6 is a bonafide Polycomb Group protein and, at the same time, has opened the field to a number of interesting questions.
by María F. Courel.
Ph. D.
Grijzenhout, Anne Elizabeth. "Characterisation of AEBP2 : a polycomb repressive complex 2 component". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:159716a1-a03c-44f3-9fd1-0e88328caef6.
Pełny tekst źródłaPalau, de Miguel Anna. "Polycomb Repressive Complex 1 functions in differentiation and myelodysplastic syndromes". Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/400293.
Pełny tekst źródłaLes proteïnes Polycomb són importants reguladors epigenètics implicats en el manteniment de la pluripotència i la diferenciació. En aquesta tesi, m'he centrat en el paper d'alguns components del Polycomb Repressive Complex 1 (PRC1). D'una banda, he estudiat el paper de la proteïna Cbx8, component del PRC1, en la diferenciació de les cèl·lules mare embrionàries de ratolí (mESCs). D'altra banda, he analitzat el paper dels components del PRC1 en un una malaltia hematològica que implica un defecte en la diferenciació, la síndrome mielodisplàstica (SMD). En concret, m'he centrat en la funció de RING1A, component del PRC1, en aquesta malaltia. Les nostres dades anteriors van mostrar que després de l'addició d'àcid retinoic (RA) durant 3 dies a la línia cel·lular de mESCs Cbx8 es sobreexpressava, tant a nivell d'ARNm com de proteïnes. Vam realitzar una immunoprecipitació de cromatina del Cbx8 endogen a nivell de tot el genoma seguit de seqüenciació massiva (ChIP-seq) per avaluar els punts d'unió de Cbx8 en tot el genoma utilitzant els ChIPs IgG i Cbx8 de mESC sense tractar com a controls negatius. La nostra anàlisi va identificar 171 pics d'alta confiança. Sorprenentment, en creuar les nostres dades amb l'anàlisi de microarrays publicat prèviament, es va demostrar que diversos gens de diferenciació transitòriament recluten Cbx8 durant la seva activació primerenca. El knockdown de Cbx8 per 2 shRNA diferents va afectar parcialment l'activació transcripcional d'aquests gens, així com va disminuir el reclutament de Cbx8 als seus gens diana. Tant l’anàlisi d'interacció per espectrometria de masses com els experiments de immunoprecipitació de la cromatina van donar suport a la idea que l'activació de Cbx8 actua en el context d'un complex PRC1 intacte. L’activació gènica prolongada va resultar en l’expulsió de PRC1 amb un H3K27me3 i H2AK119ub persistents. La composició del PRC1 és altament modular i canvia quan les cèl·lules mare embrionàries es diferencien. A més, vam demostrar que es requereix l'intercanvi de Cbx7 per Cbx8 per a l'activació efectiva dels gens de diferenciació. En conjunt, els nostres resultats estableixen una funció per a un complex que conté Cbx8 a l'hora de facilitar la transició d'un estat de cromatina reprimida per Polycomb a un estat actiu. Per tal de caracteritzar la funció de PRC1 en la patogènesi de SMD vam utilitzar dades d’expressió públicament disponibles de pacients amb SMD i durant la diferenciació mieloide normal per tal d’identificar i quantificar el nivell dels components de PRC1. A partir d'aquesta anàlisi es van seleccionar quatre components del PRC1 ( CBX6, BMI1, RING1A i CBX7) i dos components del PRC2 (EZH2 i ASXL1) per al seu posterior estudi. Vam decidir treballar amb línies cel·lulars relacionades amb MDS per tal d’estudiar aquests components PRC. Per aquesta raó, hem caracteritzat àmpliament 5 línies cel·lulars de leucèmia mieloide aguda (LMA) derivades de síndromes mielodisplàstiques (SMD) per citogenètica convencional, single nucleotide polymorphism arrays, un panell mutacional de 83 gens relacionats amb SMD /LMA i immunofenotip. Després d'aquest estudi, vam seleccionar la línia cel·lular SKK-1 com el model més adequat per estudiar la funció dels components PRC1 seleccionats. Basant- nos en la troballa que RING1A està altament expressat en cèl·lules mare hematopoètiques i a més es sobreexpressa en pacients de SMD amb alt risc, hem analitzat la funció de RING1A. Vam trobar que RING1A inhibeix la diferenciació de la línia cel·lular de SMD/LMA i en cèl·lules mare hematopoètiques primàries. Proporcionem a més la primera evidència que la inhibició farmacològica de RING1A podria ser una estratègia terapèutica ja que el tractament en cèl·lules mare hematopoètiques afavoreix la diferenciació.
Cedrone, L. "THE ROLE OF ENHANCED POLYCOMB REPRESSIVE COMPLEX 2 ACTIVITY IN TUMORIGENESIS". Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/468289.
Pełny tekst źródłaRagazzini, Roberta. "Identification of a tissue-specific cofactor of polycomb repressive complex 2". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066196/document.
Pełny tekst źródłaThe Polycomb Repressive Complex 2 (PRC2) plays an essential role in development by maintaining gene repression through the deposition of H3K27me3. A variety of cofactors have been shown to control its function in cells of various origins however little is known about PRC2 regulation during gametogenesis. During my PhD, I took advantage of murine models where Ezh2 and Ezh1 were knocked-in, I isolated nuclear extracts from whole adult testis and, identified a new polypeptide interacting with PRC2. This protein is specifically expressed in gonads, is of unknown function and does not contain any conserved domain. I have confirmed its interaction with PRC2, identified the domain of interaction with PRC2 and shown that it could tether PRC2 to chromatin. Thanks to a knockout mouse model, I demonstrated that the protein is required for female fertility, whereas its ablation brings to a global increase of H3K27me3 PRC2-associated mark in male germ cells with little consequences on male fertility. I also contributed to the characterization of the interplay between the long non-coding RNA (lncRNA) HOTAIR and PRC2 complex. Many lncRNAs have been proposed to modulate chromatin-modifying complexes action on chromatin. With the help of novel RNA-tethering system, HOTAIR inducible expression causes transgene repression independently from PRC2. Forced overexpression of HOTAIR also has little impact on transcriptome in breast cancer cells. Generally, PRC2 binding to RNA is not required for chromatin targeting. Taken together these results shed light to the mechanism of a new-identified cofactor regulating PRC2 in the gonads and contribute to dissect PRC2-RNA relationship at molecular level
Ragazzini, Roberta. "Identification of a tissue-specific cofactor of polycomb repressive complex 2". Electronic Thesis or Diss., Paris 6, 2017. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2017PA066196.pdf.
Pełny tekst źródłaThe Polycomb Repressive Complex 2 (PRC2) plays an essential role in development by maintaining gene repression through the deposition of H3K27me3. A variety of cofactors have been shown to control its function in cells of various origins however little is known about PRC2 regulation during gametogenesis. During my PhD, I took advantage of murine models where Ezh2 and Ezh1 were knocked-in, I isolated nuclear extracts from whole adult testis and, identified a new polypeptide interacting with PRC2. This protein is specifically expressed in gonads, is of unknown function and does not contain any conserved domain. I have confirmed its interaction with PRC2, identified the domain of interaction with PRC2 and shown that it could tether PRC2 to chromatin. Thanks to a knockout mouse model, I demonstrated that the protein is required for female fertility, whereas its ablation brings to a global increase of H3K27me3 PRC2-associated mark in male germ cells with little consequences on male fertility. I also contributed to the characterization of the interplay between the long non-coding RNA (lncRNA) HOTAIR and PRC2 complex. Many lncRNAs have been proposed to modulate chromatin-modifying complexes action on chromatin. With the help of novel RNA-tethering system, HOTAIR inducible expression causes transgene repression independently from PRC2. Forced overexpression of HOTAIR also has little impact on transcriptome in breast cancer cells. Generally, PRC2 binding to RNA is not required for chromatin targeting. Taken together these results shed light to the mechanism of a new-identified cofactor regulating PRC2 in the gonads and contribute to dissect PRC2-RNA relationship at molecular level
Sanulli, Serena. "Polycomb repressive complex 2 and jarid2 in the establishment of repressive chromatin state". Paris 6, 2013. http://www.theses.fr/2013PA066429.
Pełny tekst źródłaPolycomb Repressive complex 2 (PRC2) contributes to the maintenance of epigenetic silencing established during development through the di- and trimethylation of H3K27. PRC2 complex is crucial for several biological processes, including stem cell self-renewal and differentiation, and maintenance of cell identity. Despite intensive research, the mechanisms that dynamically regulate PRC2 recruitment to the chromatin are still poorly understood. Recent studies identified Jarid2 as a cofactor of PRC2 and proposed this protein as a regulator of PRC2 targeting. During my PhD, I focused on the molecular mechanisms responsible for PRC2 chromatin targeting mediated by Jarid2 cofactor. I demonstrated that Jarid2 is methylated by PRC2 and that its methylation stimulates PRC2 enzymatic activity. Biochemical and in vivo approaches revealed that Jarid2 methylation acts during the de novo targeting of PRC2 complex to prime PRC2 activity and ensure the establishment of H3K27me3 at new genomic sites. I also contributed to the characterization of a novel SET-domain containing protein encoded by the bacteria L. Pneumophila. This protein, secreted by the bacteria after cellular infection, is targeted to the host chromatin to induce a unique modification, H3K14me. This mark, normally not present in mammalian host cells, prevents H3K14 acetylation and causes global transcriptional repression to circumvent cellular defense. These findings provided new perspectives about the regulation and function of histone-methyltransferase proteins during development and cell fate decision, as well as during cellular infections
Asamaowei, Inemo E. "The Role of Polycomb Repressive Complex 2 in Epidermal Homeostasis and Hair Growth". Thesis, University of Bradford, 2017. http://hdl.handle.net/10454/16844.
Pełny tekst źródłaSharif, Azar. "Structural characterization of the polycomb repressor complex 1 binding partner ubiquitin specific protease 11". Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/39355.
Pełny tekst źródłaCzęści książek na temat "Polycomb complex"
Guo, Yiran, Yao Yu i Gang Greg Wang. "Polycomb Repressive Complex 2 in Oncology". W Cancer Treatment and Research, 273–320. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-45654-1_9.
Pełny tekst źródłaLiu, Xin. "A Structural Perspective on Gene Repression by Polycomb Repressive Complex 2". W Subcellular Biochemistry, 519–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58971-4_17.
Pełny tekst źródłaShirai, Manabu, Yoshihiro Takihara i Takayuki Morisaki. "Pcgf5 Contributes to PRC1 (Polycomb Repressive Complex 1) in Developing Cardiac Cells". W Etiology and Morphogenesis of Congenital Heart Disease, 305–12. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-54628-3_43.
Pełny tekst źródłaBrahmachari, Vani, i Shruti Jain. "Polycomb Complexes". W Encyclopedia of Systems Biology, 1720. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_854.
Pełny tekst źródłaLuo, Ming, Mingzhu Luo, Fred Berger, E. S. Dennis, Jim W. Peacock i Abed Chaudhury. "DNA-METHYLTRANSFERASE 1 is a Member of FIS Polycomb Complex and is Involved in Seed Development in Arabidopsis". W Biotechnology and Sustainable Agriculture 2006 and Beyond, 131–33. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6635-1_16.
Pełny tekst źródłaPalacios, Daniela. "The Dynamics of Polycomb Complexes". W Methods in Molecular Biology, 139–42. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6380-5_12.
Pełny tekst źródłaDuarte-Aké, Fátima, Geovanny Nic-Can i Clelia De-la-Peña. "Somatic Embryogenesis: Polycomb Complexes Control Cell-to-Embryo Transition". W Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications, 339–54. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14760-0_13.
Pełny tekst źródłaVidal, Miguel. "Polycomb Complexes: Chromatin Regulators Required for Cell Diversity and Tissue Homeostasis". W Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development, 95–139. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-45198-0_5.
Pełny tekst źródłaParo, Renato, Ueli Grossniklaus, Raffaella Santoro i Anton Wutz. "Cellular Memory". W Introduction to Epigenetics, 49–66. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68670-3_3.
Pełny tekst źródłaHoloch, D., i R. Margueron. "Polycomb Repressive Complex 2 Structure and Function". W Polycomb Group Proteins, 191–224. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-809737-3.00009-x.
Pełny tekst źródłaStreszczenia konferencji na temat "Polycomb complex"
Iwata, Shintaro. "Abstract 4898: Polycomb group molecule PHC3 regulates polycomb complex composition and prognosis of osteosarcoma". W Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-4898.
Pełny tekst źródłaCao, Qi, Ram Mani, Bushra Ateeq, Saravana M. Dhanasekaren, Irfan Asangani, Jindan Yu, John Prensner i in. "Abstract 2795: An onco-protein axis linking polycomb repressive complex 2 and polycomb repressive complex 1 through miRNAs in cancer". W Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-2795.
Pełny tekst źródłaZHU, Junyu, Lili Li, Connie W. Hui, Joanna H. Tong, Raymond Chan, Chi Hang Wong, Qiyong Ai i in. "Abstract 2923: Targeting the polycomb repressive complex-2 related proteins in nasopharyngeal carcinoma". W Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-2923.
Pełny tekst źródłaChen, Fan, i Christine F. Brainson. "Abstract 5189: Activity of polycomb repressive complex 2 determines sensitivity to epigenetic therapy". W Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-5189.
Pełny tekst źródłaChen, Fan, i Christine F. Brainson. "Abstract 5189: Activity of polycomb repressive complex 2 determines sensitivity to epigenetic therapy". W Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-5189.
Pełny tekst źródłaBakhtiari, Mojtaba, Aria L. Byrd, Fan Chen, Alexsandr Lukyanchuk, Tanner J. DuCote i Christine Fillmore Brainson. "Abstract PR03: Metabolic control of Polycomb Repressive Complex 2 in Lung Disease and Lung Cancer". W Abstracts: AACR Special Virtual Conference on Epigenetics and Metabolism; October 15-16, 2020. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.epimetab20-pr03.
Pełny tekst źródłaBentrop, M., C. Vokuhl, D. von Schweinitz i R. Kappler. "Inhibition of the polycomb repressive complex 1 (PRC1) as a therapeutic option in childhood liver tumors". W 32. Jahrestagung der Kind-Philipp-Stiftung für pädiatrisch onkologische Forschung. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1687161.
Pełny tekst źródłaCrosby, Lynn M., i Christopher Waters. "A Role For The Polycomb Repressor Complex 2 Protein EZH2 In Rat Alveolar Type II Cell Wound Healing". W American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a5108.
Pełny tekst źródłaHamaidia, Malik, Clotilde Hoyos i Luc L. Willems. "Abstract 3800: Inhibition of Polycomb Repressive Complex 2 EZH2 lysine methyltransferase improves tumoricidal activity of macrophages towards mesothelioma cells". W Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-3800.
Pełny tekst źródłaQian, Tingting, Jeong-Yeon Lee, Hyun-Jun Kim i Gu Kong. "Abstract LB-96: Id1 enhances RING1b E3 ubiquitin ligase activity through the Mel-18/Bmi-1 polycomb group complex". W Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-lb-96.
Pełny tekst źródłaRaporty organizacyjne na temat "Polycomb complex"
Ohad, Nir, i Robert Fischer. Regulation of plant development by polycomb group proteins. United States Department of Agriculture, styczeń 2008. http://dx.doi.org/10.32747/2008.7695858.bard.
Pełny tekst źródłaOhad, Nir, i Robert Fischer. Regulation of Fertilization-Independent Endosperm Development by Polycomb Proteins. United States Department of Agriculture, styczeń 2004. http://dx.doi.org/10.32747/2004.7695869.bard.
Pełny tekst źródłaOhad, Nir, i Robert Fischer. Control of Fertilization-Independent Development by the FIE1 Gene. United States Department of Agriculture, sierpień 2000. http://dx.doi.org/10.32747/2000.7575290.bard.
Pełny tekst źródłaOri, Naomi, i Mark Estelle. Specific mediators of auxin activity during tomato leaf and fruit development. United States Department of Agriculture, styczeń 2012. http://dx.doi.org/10.32747/2012.7597921.bard.
Pełny tekst źródła