Gotowa bibliografia na temat „Polyanionic materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Polyanionic materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Polyanionic materials"
Marshall, Kayleigh L., Qianlong Wang, Hannah S. I. Sullivan i Mark T. Weller. "Synthesis and structural characterisation of transition metal fluoride sulfates". Dalton Transactions 45, nr 21 (2016): 8854–61. http://dx.doi.org/10.1039/c6dt00582a.
Pełny tekst źródłaSichevych, Olga, Yurii Prots, Walter Schnelle, Frank R. Wagner i Yuri Grin. "Polycation–Polyanion Architecture of the Intermetallic Compound Mg3−xGa1+xIr". Molecules 27, nr 3 (20.01.2022): 659. http://dx.doi.org/10.3390/molecules27030659.
Pełny tekst źródłaWerwein, Anton, Christopher Benndorf, Marko Bertmer, Alexandra Franz, Oliver Oeckler i Holger Kohlmann. "Hydrogenation Properties of LnAl2 (Ln = La, Eu, Yb), LaGa2, LaSi2 and the Crystal Structure of LaGa2H0.71(2)". Crystals 9, nr 4 (3.04.2019): 193. http://dx.doi.org/10.3390/cryst9040193.
Pełny tekst źródłaBarpanda, Prabeer, Laura Lander, Shin-ichi Nishimura i Atsuo Yamada. "Polyanionic Insertion Materials for Sodium-Ion Batteries". Advanced Energy Materials 8, nr 17 (20.04.2018): 1703055. http://dx.doi.org/10.1002/aenm.201703055.
Pełny tekst źródłaWu, Honglun, Yiqing Chen, Tianzhuo Wen, Long Chen, Xiangjun Pu i Zhongxue Chen. "Advances in Vanadium-Redoxed Polyanions for High-Voltage Sodium-Ion Batteries". Batteries 9, nr 1 (12.01.2023): 56. http://dx.doi.org/10.3390/batteries9010056.
Pełny tekst źródłaGuijarro, Albert, i Miguel Yus. "Polychlorinated materials as a source of polyanionic synthons". Tetrahedron 52, nr 5 (styczeń 1996): 1797–810. http://dx.doi.org/10.1016/0040-4020(95)01014-9.
Pełny tekst źródłaSingh, Shashwat, Shubham Lochab, Lalit Sharma, Valérie Pralong i Prabeer Barpanda. "An overview of hydroxy-based polyanionic cathode insertion materials for metal-ion batteries". Physical Chemistry Chemical Physics 23, nr 34 (2021): 18283–99. http://dx.doi.org/10.1039/d1cp01741a.
Pełny tekst źródłaSharma, Lalit, i Arumugam Manthiram. "Polyanionic insertion hosts for aqueous rechargeable batteries". Journal of Materials Chemistry A 10, nr 12 (2022): 6376–96. http://dx.doi.org/10.1039/d1ta11080b.
Pełny tekst źródłaZhang, Huang, Xiaoping Tan, Huihua Li, Stefano Passerini i Wei Huang. "Assessment and progress of polyanionic cathodes in aqueous sodium batteries". Energy & Environmental Science 14, nr 11 (2021): 5788–800. http://dx.doi.org/10.1039/d1ee01392k.
Pełny tekst źródłaBianchini, M., J. M. Ateba-Mba, P. Dagault, E. Bogdan, D. Carlier, E. Suard, C. Masquelier i L. Croguennec. "Multiple phases in the ε-VPO4O–LiVPO4O–Li2VPO4O system: a combined solid state electrochemistry and diffraction structural study". J. Mater. Chem. A 2, nr 26 (2014): 10182–92. http://dx.doi.org/10.1039/c4ta01518e.
Pełny tekst źródłaRozprawy doktorskie na temat "Polyanionic materials"
Kim, Jae Chul Ph D. Massachusetts Institute of Technology. "Design of novel lithium storage materials with a polyanionic framework". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/88373.
Pełny tekst źródłaCataloged from PDF version of thesis. "February 2014." Page 206 blank.
Includes bibliographical references (pages 195-205).
Lithium ion batteries for large-scale applications demand a strict safety standard from a cathode material during operating cycles. Lithium manganese borate (LiMnBO₃) that crystallizes into a hexagonal or monoclinic framework is one prominent polyanionic compound to cope with such requirement since it can possess high safety and high energy density simultaneously, without trading one for the other, theoretically. However, the hexagonal phase was nothing but a disregarded composition due to its negligible Li intercalation capacity. In contrast, the monoclinic LiMnBO₃ compound exhibited much more electrochemical activity than the hexagonal polymorph. In this thesis work, the discharge capacity of 100 mAh g 1 with acceptable capacity retention was achieved by simple optimization. The different electrochemical behaviors between them were understood in relation to their structural difference as it affects the Li migration barrier, structural stability of Li-deficient states, and even particle morphology. However, although promising, monoclinic LiMnBO₃ needed further improvement in terms of the achievable capacity and cyclability. Electrochemical analysis showed that the limited capacity of LiMnBO₃ mostly originated from transport limitation, a hindered Li migration through the one-dimensional diffusion channel. It also struggled from the phase decomposition and Mn dissolution due to the instability of the delithiated state, which led to gradual capacity fading in prolonged cycles. As an effective materials design strategy to overcome such limitations, systematic substitution of transition metal elements was proposed. To increase achievable capacity, Mn was partially substituted by Fe. Also, to fortify the structural integrity, Mg replaced Mn. In order to obtain both improved capacity and cyclability, Fe and Mg are co-doping led to an optimized composition. Prepared by cold-isostatic pressing, LiMg₀.₁Mn₀.₅Fe₀.₄4BO₃ showed near theoretical capacity of 200 mAh g-¹ with much improved capacity retention. These newly established materials outperformed most of the polyanionic cathode compounds. Therefore, it can be concluded a new promising candidate as a Li storage material has been developed through this thesis research.
by Jae Chul Kim.
Ph. D.
Matts, Ian Lawrence. "Multi-redox active polyanionic cathodes for alkali-ion batteries". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104108.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 121-139).
In order for alkali-ion batteries to gain widespread adoption as the energy storage technology of choice for transportation and grid applications, their energy must be improved. One key step towards this necessary improvement is the development of new battery cathode materials. In this thesis, two classes of polyanionic materials are examined as candidate cathodes for alkali-ion batteries: Li-containing carbonophosphates for Li-ion batteries and Na-containing fluorophosphates for Na-ion batteries. High-throughput ab initio calculations have previously identified carbonophosphates as a new class of polyanionic cathode materials. Li₃MnCO₃PO₄ is the most promising candidate due to its high theoretical capacity, predicted multi-redox activity, and ideal voltage range. However, a major limitation of this material is its poor cyclability and experimental capacity. In this work Li₃Fe₀.₂Mn₀.₈CO₃PO₄ is synthesized to combine the high theoretical capacity of Li₃MnCO₃PO₄ with the high cyclability of Li₃FeCO₃PO₄. Li₃Fe₀.₂Mn₀.₈CO₃PO₄ outperforms both Li₃MnCO₃PO₄ and Li₃FeCO₃PO₄, showing a reversible capacity of 105 mAh/g with little capacity fade over 25 cycles. However, poor thermodynamic stability of these compounds, particularly at partially delithiated compositions, prevents carbonophosphates from being seriously considered as a viable Li-ion cathode. Fluorophosphate cathodes are currently one of the most promising polyanionic sodium-ion battery cathodes due to their high energy density and cyclability. To further improve fluorophosphate cathodes, their capacity must be increased by using Na sites that had not been accessed prior to this work. In this thesis, reversible electrochemical Na+ insertion into Na₃V₂(PO₄)₂F₃ is demonstrated. To further improve fluorophosphate cathodes by using its newly discovered insertion capacity, novel Na₃[M]₂(PO₄)₂F₃ cathodes, with {M = Fe, Ti, V}, are synthesized and evaluated. Seeing no improvement, the question of what specific mechanism limits fluorophosphate cathode capacity is addressed. For this, the synthesis, electrochemical characterization, and computational examination of a specifically designed test system, Na₃GaV(PO₄)₂F₃, is reported. This leads to the conclusion that large diffusion barriers at high sodiations impose a kinetic limit on Na+ insertion in fluorophosphate cathodes, as opposed to limits in transition metal redox activity.
by Ian Lawrence Matts.
Ph. D.
Zhang, Huang [Verfasser], i S. [Akademischer Betreuer] Passerini. "Polyanionic cathode materials for sodium-ion batteries / Huang Zhang ; Betreuer: S. Passerini". Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/1178528162/34.
Pełny tekst źródłaGardiner, Grahame. "Atomistic simulation of polyanion cathode materials for lithium batteries". Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.564008.
Pełny tekst źródłaGlass, Hugh. "Borate polyanion-based systems as Li- and Mg-ion cathode materials". Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/264940.
Pełny tekst źródłaMASESE, TITUS NYAMWARO. "Iron-based Polyanion Cathode Materials for High-Energy Density Rechargeable Lithium and Magnesium Batteries". Kyoto University, 2015. http://hdl.handle.net/2433/199395.
Pełny tekst źródła0048
新制・課程博士
博士(人間・環境学)
甲第19071号
人博第724号
新制||人||174(附属図書館)
26||人博||724(吉田南総合図書館)
32022
京都大学大学院人間・環境学研究科相関環境学専攻
(主査)教授 内本 喜晴, 教授 田部 勢津久, 准教授 藤原 直樹
学位規則第4条第1項該当
Siegfried, Adam. "Exploratory synthesis of polyanion-based open-framework solids as potential candidates for cathode material applications". Connect to this title online, 2008. http://etd.lib.clemson.edu/documents/1211391125/.
Pełny tekst źródłaMourad, Abdel Hamid. "Comportement photo-oxydant d'heteropolytungstates de structure de keggin". Paris 6, 1987. http://www.theses.fr/1987PA066545.
Pełny tekst źródłaNguyen, Long Hoang Bao. "Cristallochimie d’oxyphosphates fluorés de vanadium : De l’étude de leur structure à leurs performances en batteries Na-ion". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0356.
Pełny tekst źródłaNa-ion batteries are currently developed as a future alternative to the conventional Li-ion batteries. Among all the polyanion materials studied as positive electrodes for Na-ion batteries, Na3V2(PO4)2F3 and Na3(VO)2(PO4)2F are the two promising compositions thanks to their high theoretical capacity, high Na+-extraction voltage, and especially the high stability of their structural framework upon long-term cycling. Furthermore, the crystal structure and the electrochemical properties of these materials can be greatly modulated through an effect of cationic or anionic substitution. This PhD work aims at exploring the diversity in crystal chemistry of Na3V2(PO4)2F3, Na3(VO)2(PO4)2F and their derivatives obtained through different synthesis methods. The three-dimensional long range crystal structure of these phases is determined by the use of high resolution synchrotron X-ray powder diffraction whereas their local atomic and electronic structures are investigated through a combination of solid-state nuclear magnetic resonance supported by first-principles theoretical calculations, synchrotron X-ray absorption spectroscopy and infrared spectroscopy. Thereafter, the phase diagram and the redox processes involved in the Na+ de-intercalation and intercalation are established thanks to operando synchrotron X-ray diffraction and absorption. An in-depth understanding on the crystal structure as well as the involved redox couples for each composition helps us to determine the limitations of these vanadium fluorinated oxy-phosphates and sheds light to the development of new materials with better performance based on their structure
"High Pressure and High Temperature Study on Lithium carbide (Li2C2) and Calcium carbide (CaC2): An attempt to make a novel polyanionic form of Carbon". Master's thesis, 2012. http://hdl.handle.net/2286/R.I.15232.
Pełny tekst źródłaDissertation/Thesis
M.S. Chemistry 2012
Części książek na temat "Polyanionic materials"
Okada*, Shigeto, i Jun-ichi Yamaki. "Polyanionic Cathode-Active Materials". W Lithium-Ion Batteries, 1–11. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-34445-4_9.
Pełny tekst źródłaJulien, Christian, Alain Mauger, Ashok Vijh i Karim Zaghib. "Polyanionic Compounds as Cathode Materials". W Lithium Batteries, 201–68. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19108-9_7.
Pełny tekst źródłaBarpanda, P., i J. M. Tarascon. "Fluorine-Based Polyanionic Compounds for High-Voltage Electrode Materials". W Lithium Batteries, 127–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118615515.ch7.
Pełny tekst źródłaLi, Biao, Huijun Yan, Jin Ma, Pingrong Yu, Dingguo Xia, Weifeng Huang, Wangsheng Chu i Ziyu Wu. "Polyanion-Modified Li-Rich Manganese-Based Layered Materials". W Studies on Anionic Redox in Li-Rich Cathode Materials of Li-Ion Batteries, 35–54. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2847-3_3.
Pełny tekst źródłaWu, X. B., X. H. Wu, J. H. Guo, S. D. Li, R. Liu, M. J. McDonald i Y. Yang. "Polyanion Compounds as Cathode Materials for Li-Ion Batteries". W Rechargeable Batteries, 93–134. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15458-9_4.
Pełny tekst źródłaHu, Bingwen, Zigeng Liu i Rüdiger-A. Eichel. "CHAPTER 6. NMR Studies on Polyanion-type Cathode Materials for LIBs/NIBs". W New Developments in NMR, 211–52. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839160097-00211.
Pełny tekst źródłaTerny, S., i M. A. Frechero. "Study of Phosphate Polyanion Electrodes and Their Performance with Glassy Electrolytes: Potential Application in Lithium Ion Solid-state Batteries". W Advanced Electrode Materials, 321–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119242659.ch8.
Pełny tekst źródłaSingh, Shashwat, Sai Pranav Vanam, Shubham Lochab, Maximilian Fichtner i Prabeer Barpanda. "Development of polyanionic sodium-ion battery insertion materials". W Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-823144-9.00154-0.
Pełny tekst źródłaBegam, K. M., M. S. Michael i S. R. S. Prabaharan. "TOPOTACTIC LITHIUM INSERTION/EXTRACTION PROPERTIES OF A NEW POLYANION MATERIAL2(4)3[0 ≤ < 3] FOR RECHARGEABLE LITHIUM BATTERIES". W Solid State Ionics, 461–68. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702586_0049.
Pełny tekst źródłaStreszczenia konferencji na temat "Polyanionic materials"
ALOUI, Thamer, Najla FOURATI, Hajer GUERMAZI, Samir GUERMAZI i Chouki ZERROUKI. "Polyanionic Molybdate Powders as Promising Electrode Materials Based on NASICON Fe2 (MoO4)3 Networks". W MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/mol2net-04-05642.
Pełny tekst źródłaLoyola, Bryan R., Valeria La Saponara i Kenneth J. Loh. "Embedded Piezoresistive Thin Films for Monitoring GFRP Composites". W ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3621.
Pełny tekst źródłaWang, Zhaomin, Fanming Zeng, Chun Li i Limin Wang. "Polyanions SnWO4 nanowires using as the lithium-ion battery anode". W 2022 International Conference on Optoelectronic Materials and Devices, redaktor Qiang Huang. SPIE, 2023. http://dx.doi.org/10.1117/12.2674018.
Pełny tekst źródłaKe, Linping, Josselyne Chano, Melissa Weston, Hong Sun i Dong Shen. "Dry Cationic Friction Reducers: New Alternative for High TDS Slickwater". W SPE International Conference on Oilfield Chemistry. SPE, 2021. http://dx.doi.org/10.2118/204286-ms.
Pełny tekst źródłaVujković, Milica, Aleksandra Gezović, Danica Bajuk Bogdanović, Tamara Petrović, Veselinka Grudić i Slavko Mentus. "What Drives the Synthesis of Mixed Polyanionic Na4Fe3(PO4)2P2O7 Cathode Material and Determines its Electrochemical Behavior?" W MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.112.
Pełny tekst źródłaCanepa, Pieremanuele, Zeyu Deng, Tara Mishra, Eunike Mahayoni, Vincent Seznec, Jean-Noel Chotard, Anthony Cheetham, Christian Masquelier i Gopalakrishnan Sai Gautam. "Theoretical and Experimental Studies of ion Transport in Mixed Polyanion Solid Electrolytes". W Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.001.
Pełny tekst źródła