Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Platinum group.

Artykuły w czasopismach na temat „Platinum group”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Platinum group”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Evstigneeva, Tatiana, i Mahmud Tarkian. "Synthesis of platinum-group minerals under hydrothermal conditions". European Journal of Mineralogy 8, nr 3 (17.06.1996): 549–64. http://dx.doi.org/10.1127/ejm/8/3/0549.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Rubezhov, A. Z. "Platinum Group Organometallics". Platinum Metals Review 36, nr 1 (1.01.1992): 26–33. http://dx.doi.org/10.1595/003214092x3612633.

Pełny tekst źródła
Streszczenie:
Platinum group organometallics have recently been the subject of intensive investigation designed to establish the basic characteristics of their decomposition, which results in the formation of metallic or metalcontaining coatings. This review has been compiled from a literature search and indicates some of the applications that are, or could be, of commercial significance.
Style APA, Harvard, Vancouver, ISO itp.
3

YARITA, Somei. "Platinum, Platinum Alloy Plating and Platinum Group Metals Electroforming Technology". Journal of the Surface Finishing Society of Japan 55, nr 10 (2004): 646. http://dx.doi.org/10.4139/sfj.55.646.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Chen, Wei-Sheng, i Jie-Yu Yang. "Concentrating and Dissolving Platinum Group Metals from Copper Anode Slime". International Journal of Materials, Mechanics and Manufacturing 7, nr 6 (grudzień 2019): 245–49. http://dx.doi.org/10.18178/ijmmm.2019.7.6.468.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Augé, Thierry, Guillaume Morin, Laurent Bailly i Todor Serafimovsky. "Platinum-group minerals and their host chromitites in Macedonian ophiolites". European Journal of Mineralogy 29, nr 4 (10.10.2017): 585–96. http://dx.doi.org/10.1127/ejm/2017/0029-2624.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Schofield, Cynthia B. "The Platinum Loop Group". Laboratory Medicine 35, nr 7 (1.07.2004): 399–402. http://dx.doi.org/10.1309/u0jxj7c79n2fjvw8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Carlson, Ernest H. "Platinum-group element exploration". Geoexploration 26, nr 2 (listopad 1989): 145–46. http://dx.doi.org/10.1016/0016-7142(89)90059-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Pohl, W. "Platinum-group element exploration". Ore Geology Reviews 4, nr 4 (sierpień 1989): 365–66. http://dx.doi.org/10.1016/0169-1368(89)90013-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Burke, Gill. "The Platinum Group Metals". Minerals & Energy - Raw Materials Report 7, nr 4 (styczeń 1990): 19–23. http://dx.doi.org/10.1080/14041049009409959.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Dey, Sandip, i Vimal K. Jain. "Platinum Group Metal Chalcogenides". Platinum Metals Review 48, nr 1 (1.01.2004): 16–29. http://dx.doi.org/10.1595/003214004x4811629.

Pełny tekst źródła
Streszczenie:
Some salientfeatures of platinum group metal compounds with sulfur, selenium or tellurium, known as chalcogenides, primarily focusing on binary compounds, are described here. Their structural patterns are rationalised in terms of common structural systems. Some applications of these compounds in catalysis and materials science are described, and emerging trends in designing molecular precursors for the syntheses of these materials are highlighted.
Style APA, Harvard, Vancouver, ISO itp.
11

Thompson, D. T. "Platinum Group Metal Fullerenes". Platinum Metals Review 40, nr 1 (1.01.1996): 23–25. http://dx.doi.org/10.1595/003214096x4012325.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Al-Allaf, Talal A. K., i Abeer Z. M. Sheet. "Platinum group metal Schiff base complexes—I. Platinum complexes". Polyhedron 14, nr 2 (styczeń 1995): 239–48. http://dx.doi.org/10.1016/0277-5387(94)00231-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Ashfield, Laura. "Recycling of Platinum Group Metals". ECS Meeting Abstracts MA2023-02, nr 38 (22.12.2023): 1813. http://dx.doi.org/10.1149/ma2023-02381813mtgabs.

Pełny tekst źródła
Streszczenie:
The platinum group metals (Pt, Pd, Rh, Ir, and Ru) are cited as critical minerals by the US Geological Survey and appear on the EU Critical Raw Materials list due to their low natural abundance and economic importance. Platinum has many uses including jewellery, medical devices and pharmaceuticals, coatings, automotive catalysts, nitric acid manufacture and other industrial catalysts, electronics, and plays a crucial role in the growing area of fuel cell and water electrolyzers. Early recognition of the need to recycle these valuable elements has led to the development of a circular economy using highly advanced processes for extracting and separating them from complex materials, returning the metals to use in a highly pure form. This presentation will give an overview of the industry up to the present day, including examples of the application of separation techniques, and will explore the potential for reduced environmental impact from recycling platinum group metals and the benefits of consideration of design for recycle in product development.
Style APA, Harvard, Vancouver, ISO itp.
14

Screen, By Thomas. "Platinum Group Metal Perovskite Catalysts". Platinum Metals Review 51, nr 2 (1.04.2007): 87–92. http://dx.doi.org/10.1595/147106707x192645.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Griffith, W. P. "Melting the Platinum Group Metals". Platinum Metals Review 53, nr 4 (1.10.2009): 209–15. http://dx.doi.org/10.1595/147106709x472507.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Palme, H. "Platinum-Group Elements in Cosmochemistry". Elements 4, nr 4 (1.08.2008): 233–38. http://dx.doi.org/10.2113/gselements.4.4.233.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

RUBEZHOV, A. Z. "ChemInform Abstract: Platinum Group Organometallics". ChemInform 23, nr 33 (21.08.2010): no. http://dx.doi.org/10.1002/chin.199233311.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

I.E.C. "Platinum Group Metals in 1991". Platinum Metals Review 36, nr 2 (1.04.1992): 89. http://dx.doi.org/10.1595/003214092x3628989a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Buchanan, D. L. "Geology of Platinum Group Elements". Platinum Metals Review 47, nr 2 (1.04.2003): 59–60. http://dx.doi.org/10.1595/003214003x4725960.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

G.C.B. "Platinum Group Metals in Catalysis". Platinum Metals Review 29, nr 1 (1.01.1985): 28. http://dx.doi.org/10.1595/003214085x2912828.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Fischer, Bernd, Andreas Behrends, Dietmar Freund, David F. Lupton i Jiirgen Merker. "High Temperature Mechanical Properties of the Platinum Group Metals". Platinum Metals Review 43, nr 1 (1.01.1999): 18–28. http://dx.doi.org/10.1595/003214099x4311828.

Pełny tekst źródła
Streszczenie:
There is a constantly increasing need for metallic materials with melting points over 1700°C for use at very high temperatures. In contrast to the refractory metals: tantalum, niobium, tungsten, molybdenum and rhenium, which also have very high melting points, the metals of the platinum group, particularly platinum, rhodium and iridium, are characterised by outstanding chemical stability, oxidation resistance and resistance to many molten oxides. The platinum group metals are therefore ideal materials for using at high temperatures while undergoing simultaneous chemical attack and mechanical loading. However, for optimum effective employment of these metals, it is necessary to know their strength and deformation behaviour at extremely high temperatures. Data have therefore been collected from comparative investigations of platinum, platinum alloys, dispersion hardened platinum materials, rhodium and iridium, and the compilations are presented here.
Style APA, Harvard, Vancouver, ISO itp.
22

Merkle, Roland K. W. "Platinum-group minerals in the middle group of chromitite layers at Marikana, western Bushveld Complex: indications for collection mechanisms and postmagmatic modification". Canadian Journal of Earth Sciences 29, nr 2 (1.02.1992): 209–21. http://dx.doi.org/10.1139/e92-020.

Pełny tekst źródła
Streszczenie:
The platinum-group minerals in a drill core taken through the middle group of chromitite layers in the Critical Zone at Marikana in the western Bushveld Complex were found to consist mainly of laurite as inclusions in chromite grains. The platinum-group minerals containing Pt, Pd, and Rh are concentrated in the intercumulus silicates and frequently associated with base-metal sulphides. Up to about 20% of all platinum-group minerals in the investigated chromitite layers contain sub stantial amounts of As. The base-metal sulphides are strongly modified in the postmagmatic stage, which led to a significant loss of Fe and S, in this way concentrating Cu, Ni, and the platinum-group elements by factors of up to 10. Interaction between chromite and base-metal sulphides cannot account for all the Fe lost in chromite-poor samples, and the importance of additional processes is indicated. Inclusions in chromite and orthopyroxene indicate the formation of discrete platinum-group minerals and As-rich phases before the formation of an immiscible sulphide melt. Resorption of earlier formed platinum-group minerals into the immiscible sulphide melt and postmagmatic sulphidation destroyed most of the evidence of the early formed platinum-group minerals.
Style APA, Harvard, Vancouver, ISO itp.
23

Korges, Maximilian, Malte Junge, Gregor Borg i Thomas Oberthür. "Supergene mobilization and redistribution of platinum-group elements in the Merensky Reef, eastern Bushveld Complex, South Africa". Canadian Mineralogist 59, nr 6 (1.11.2021): 1381–96. http://dx.doi.org/10.3749/canmin.2100023.

Pełny tekst źródła
Streszczenie:
ABSTRACT Near-surface supergene ores of the Merensky Reef in the Bushveld Complex, South Africa, contain economic grades of platinum-group elements, however, these are currently uneconomic due to low recovery rates. This is the first study that investigates the variation in platinum-group elements in pristine and supergene samples of the Merensky Reef from five drill cores from the eastern Bushveld. The samples from the Richmond and Twickenham farms show different degrees of weathering. The whole-rock platinum-group element distribution was studied by inductively coupled plasma-mass spectrometry and the platinum-group minerals were investigated by reflected-light microscopy, scanning electron microscopy, and electron microprobe analysis. In pristine (“fresh”) Merensky Reef samples, platinum-group elements occur mainly as discrete platinum-group minerals, such as platinum-group element-sulfides (cooperite–braggite) and laurite as well as subordinate platinum-group element-bismuthotellurides and platinum-group element-arsenides, and also in solid solution in sulfides (especially Pd in pentlandite). During weathering, Pd and S were removed, resulting in a platinum-group mineral mineralogy in the supergene Merensky Reef that mainly consists of relict platinum-group minerals, Pt-Fe alloys, and Pt-oxides/hydroxides. Additional proportions of platinum-group elements are hosted by Fe-hydroxides and secondary hydrosilicates (e.g., serpentine group minerals and chlorite). In supergene ores, only low recovery rates (ca. 40%) are achieved due to the polymodal and complex platinum-group element distribution. To achieve higher recovery rates for the platinum-group elements, hydrometallurgical or pyrometallurgical processing of the bulk ore would be required, which is not economically viable with existing technology.
Style APA, Harvard, Vancouver, ISO itp.
24

Vlasov, Evgeniy A., Aleksandr G. Mochalov, Marina F. Vigasina, Vasiliy D. Shcherbakov i Pavel Yu Plechov. "PLATINUM GROUP MINERALS OF THE BAIMKA GOLD PLACER CLUSTER, WESTERN CHUKOTKA: THE NEW DATA". Ser-5_2023_4, nr 6_2023 (20.02.2024): 87–99. http://dx.doi.org/10.55959/msu0579-9406-4-2023-63-6-87-99.

Pełny tekst źródła
Streszczenie:
The results of the study of the platinum group minerals of the Baimka gold placer cluster, Western Chukotka, Russia, are presented. Platinum group minerals belong to the iridium-platinum and platinum miner- alogical-geochemical types with the Late Jurassic cumulative pyroxenite-gabbro complexes as a probable source. Platinum group minerals came to alluvial gold placers primarily from intermediate reservoirs, which is the Volgian volcanic-sedimentary sequence. Rounded silicate glass inclusions are a specific feature of platinum minerals from the Baimka placer cluster.
Style APA, Harvard, Vancouver, ISO itp.
25

Heuer, Lutz. "Fluorophosphine Complexes of the Platinum Group Metals". Platinum Metals Review 35, nr 2 (1.04.1991): 86–93. http://dx.doi.org/10.1595/003214091x3528693.

Pełny tekst źródła
Streszczenie:
Dedicated to Henri Moissan on the occasion of the one hundredth anniversary of his discovery of the first fluorophosphine platinum complex, this review describes the recent interest, and developments in fluorophosphines as ligands for platinum group metals. The synthesis, structure, reactions, stability, and the potential of these compounds as homogeneous and heterogeneous catalysts are the main features of this article.
Style APA, Harvard, Vancouver, ISO itp.
26

Yamabe-Mitarai, Yoko, Bao Zebin, Hideyuki Murakami, Hideki Abe i Toru Matsumoto. "Effective Use of Platinum Group Metals". Journal of the Japan Institute of Metals 75, nr 1 (2011): 10–20. http://dx.doi.org/10.2320/jinstmet.75.10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Degnan, Tom. "Some musings about platinum group metals". Focus on Catalysts 2021, nr 2 (luty 2021): 1–2. http://dx.doi.org/10.1016/j.focat.2021.01.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Griffith, W. P. "Bicentenary of Four Platinum Group Metals". Platinum Metals Review 48, nr 4 (1.10.2004): 182–89. http://dx.doi.org/10.1595/147106704x4844.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Thompson, David T. "Catalysis by Gold/Platinum Group Metals". Platinum Metals Review 48, nr 4 (1.10.2004): 169–72. http://dx.doi.org/10.1595/147106704x5717.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Angeli, By Nelson. "Platinum Group Minerals in Eastern Brazil". Platinum Metals Review 49, nr 1 (1.01.2005): 41–53. http://dx.doi.org/10.1595/147106705x24391.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

O’Driscoll, Brian, i José María González-Jiménez. "Petrogenesis of the Platinum-Group Minerals". Reviews in Mineralogy and Geochemistry 81, nr 1 (14.12.2015): 489–578. http://dx.doi.org/10.2138/rmg.2016.81.09.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

POPOOLA, A. I., i J. E. LOWTHER. "COMPUTATIONAL STUDY OF PLATINUM GROUP SUPERALLOYS". International Journal of Modern Physics B 28, nr 09 (5.03.2014): 1450066. http://dx.doi.org/10.1142/s0217979214500660.

Pełny tekst źródła
Streszczenie:
Various properties of substitutional alloys formed from aluminium and the platinum group metals (PGMs) are examined using density functional (D-F) theory and show strong variations depending on metal type. A similar pattern for the binary alloys is observed using molecular dynamics modeling employing Sutton Chen potentials. All results suggest that several of the PGMs could have superior properties to the presently used Ni 3 Al alloy for high temperature applications. Some phases are predicted to be stable with extremely high melting temperatures (MTs).
Style APA, Harvard, Vancouver, ISO itp.
33

HALDEN, NORMAN M., FRANK C. HAWTHORNE, J. J. GUY DUROCHER, JASPER S. C. McKEE i ALI MIRZAI. "PLATINUM GROUP ELEMENT HIGH-ENERGY PIXE". International Journal of PIXE 01, nr 02 (czerwiec 1990): 147–56. http://dx.doi.org/10.1142/s0129083590000128.

Pełny tekst źródła
Streszczenie:
K X-ray spectra have been obtained from Platinum-Group Element (PGE) minerals using 40 MeV Proton-Induced X-ray Emission. It is possible to resolve all four component X-ray lines for the PGEs. In cases where there is more than one PGE present, some K X-ray lines may overlap, but in all cases, there were single lines available for quantitative analysis. The spectrum obtained from the sperrylite during exposure to the proton beam beam contained Au X-rays. The presence of the Au can be attributed to (p,xn) reactions with Pt, induced by proton bombardment of the sample. The intensity of Au X-ray lines in the spectrum is proportional to the amount of Pt in the sample and the cross-section for (p,xn) reactions between Pt and Au at 40 MeV.
Style APA, Harvard, Vancouver, ISO itp.
34

FLIER-KELLER, EILEEN VAN DER. "Platinum Group Elements in Canadian Coal". Energy Sources 12, nr 3 (styczeń 1990): 225–38. http://dx.doi.org/10.1080/00908319008960203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Steinborn, Dirk, i Henrik Junicke. "Carbohydrate Complexes of Platinum-Group Metals". Chemical Reviews 100, nr 12 (grudzień 2000): 4283–318. http://dx.doi.org/10.1021/cr9903050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Timerbaev, Andrei R., Angelika Küng i Bernhard K. Keppler. "Capillary electrophoresis of platinum-group elements". Journal of Chromatography A 945, nr 1-2 (luty 2002): 25–44. http://dx.doi.org/10.1016/s0021-9673(01)01489-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Nelson, Lloyd R., Gregory A. Georgalli, Keith L. Hines i Rodney J. Hundermark. "Converter processing of platinum group metals". Mineral Processing and Extractive Metallurgy 128, nr 1-2 (16.08.2018): 134–59. http://dx.doi.org/10.1080/25726641.2018.1506272.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

OKABE, Toru H., Hideko NAKADA i Kazuki MORITA. "Recovery Technology of Platinum Group Metals". Hyomen Kagaku 29, nr 10 (2008): 592–600. http://dx.doi.org/10.1380/jsssj.29.592.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Levy, Christopher J., Jagadese J. Vittal i Richard J. Puddephatt. "Cationic Group 14−Platinum(IV) Complexes". Organometallics 15, nr 1 (styczeń 1996): 35–42. http://dx.doi.org/10.1021/om950591f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Fryzuk, Michael D., i Craig D. Montgomery. "Amides of the platinum group metals". Coordination Chemistry Reviews 95, nr 1 (czerwiec 1989): 1–40. http://dx.doi.org/10.1016/0010-8545(89)80001-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Free, Michael L. "Platinum group metals: Past and present". JOM 53, nr 10 (październik 2001): 10. http://dx.doi.org/10.1007/s11837-001-0047-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Shao, Qi, Kunyan Lu i Xiaoqing Huang. "Platinum Group Nanowires for Efficient Electrocatalysis". Small Methods 3, nr 5 (6.02.2019): 1800545. http://dx.doi.org/10.1002/smtd.201800545.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

McLemore, Virginia T., Robert W. Eveleth, Lynn A. Brandvold i James M. Robertson. "Platinum-group metals in New Mexico". New Mexico Geology 11, nr 2 (1989): 29–30. http://dx.doi.org/10.58799/nmg-v11n2.29.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Griffith, W. P. "Bicentenary of Four Platinum Group Metals". Platinum Metals Review 47, nr 4 (1.10.2003): 175–83. http://dx.doi.org/10.1595/003214003x474175183.

Pełny tekst źródła
Streszczenie:
The years 2002 to 2004 mark the bicentenaries of the discoveries of rhodium, palladium, iridium and osmium. Two remarkable people were responsible for their discoveries – William Hyde Wollaston (1766–1828) the discoverer of rhodium and palladium, and his friend Smithson Tennant (1761–1815) the discoverer of iridium and osmium. This and a subsequent paper will seek to retell the stories of their discoveries, and to indicate the growing usefulness of the metals throughout the nineteenth century to their importance today. In this first part we will discuss Wollaston and his discoveries. Part II, to be published in a later issue, will complete the story with Tennant’s discoveries of the more intractable elements iridium and osmium.
Style APA, Harvard, Vancouver, ISO itp.
45

Thompson, David T. "Catalysis by Gold/Platinum Group Metals". Platinum Metals Review 48, nr 4 (1.10.2004): 169–72. http://dx.doi.org/10.1595/003214004x484169172.

Pełny tekst źródła
Streszczenie:
The recent surge of new interest in catalysis by gold (–) has led researchers to investigate the effects of adding other metals to the gold. As a result, there are a number of reactions with potential for industrial application where combinations of gold with a platinum group metal (pgm) have been shown to have advantages over either gold or the pgm alone. These findings are expected to lead to applications in chemical processing, pollution control and fuel cell applications. Here, a number of catalytic processes that have benefited from the synergy between a pgm and gold are described, and some interesting reports from recent conferences are highlighted.
Style APA, Harvard, Vancouver, ISO itp.
46

Griffith, W. P. "Bicentenary of Four Platinum Group Metals". Platinum Metals Review 48, nr 4 (1.10.2004): 182–89. http://dx.doi.org/10.1595/003214004x484182189.

Pełny tekst źródła
Streszczenie:
This paper follows an earlier one on the discoveries of rhodium and palladium in 1803 by William Hyde Wollaston . In 1804, two more of the platinum metals: iridium and osmium were discovered, also in London. This paper concerns the bicentenary of their discovery by Wollaston’s friend and collaborator, Smithson Tennant.
Style APA, Harvard, Vancouver, ISO itp.
47

D.T.T. "Some Platinum Group Metals Cluster Catalysts". Platinum Metals Review 30, nr 4 (1.08.1986): 166. http://dx.doi.org/10.1595/003214086x304166166a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

McGill, I. R. "Some Ternary and Higher Order Platinum Group Metal Alloys". Platinum Metals Review 31, nr 2 (1.04.1987): 74–90. http://dx.doi.org/10.1595/003214087x3127490.

Pełny tekst źródła
Streszczenie:
Platinum-based alloys find many applications in both high and low temperature industrial environments and are particularly suited to operation under corrosive aqueous and high temperature gaseous conditions. A wide variety of alloys exist which have been specifically designed for these purposes and in many cases they contain one or more non-platinum group metal. Although this situation is quite acceptable, there remains a fundamental need for systematic investigation of the basic properties and constitution of platinum group metal alloys. Such a foundation in materials technology generally leads to an understanding of materials behaviour and provides guidance in designing new alloys with improved properties for existing and future applications. This review features the work which has been done on ternary and higher order platinum group metal alloys and provides access to important data.
Style APA, Harvard, Vancouver, ISO itp.
49

Kulikov, M., i E. Kopishev. "Review: Extraction of platinum group metals from catalytic converters". BULLETIN of the L.N. Gumilyov Eurasian National University. Chemistry. Geography. Ecology Series 142, nr 1 (2023): 37–71. http://dx.doi.org/10.32523/2616-6771-2023-142-1-37-71.

Pełny tekst źródła
Streszczenie:
Platinum group metals (PGM) are widely used in catalytic industry due to their outstanding physical and chemical properties (high-temperature stability, high catalyst activity, high heat resistance, high corrosion resistances). They are used in medical fields, electronics, oil refining, production of ammonia, fuel cells, automotive industry. Catalytic wastes are an important secondary source of metals because recycling of wastes is more economical and ecological way of metals obtaining compared to mining from ores. Spent automotive catalyst is a rich source of platinum group metals [PGM: platinum (Pt), palladium (Pd), and rhodium (Rh)] which contains higher concentrations of PGM than found in natural ores. This review presents the analysis of the recovery methods of platinum group metals from spent catalysts and their advantages and disadvantages. As a result, all methods were analyzed and the most promising (most environmentally friendly and economical) was pointed out.
Style APA, Harvard, Vancouver, ISO itp.
50

Kulikov, M., i E. Kopishev. "Review: Extraction of platinum group metals from catalytic converters". BULLETIN of L.N. Gumilyov Eurasian National University. CHEMISTRY. GEOGRAPHY. ECOLOGY Series 142, nr 1 (2023): 36–73. http://dx.doi.org/10.32523/2616-6771-2023-142-1-36-73.

Pełny tekst źródła
Streszczenie:
Platinum group metals (PGM) are widely used in catalytic industry due to their outstanding physical and chemical properties (high-temperature stability, high catalyst activity, high heat resistance, high corrosion resistances). They are used in medical fields, electronics, oil refining, production of ammonia, fuel cells, automotive industry. Catalytic wastes are an important secondary source of metals because recycling of wastes is more economical and ecological way of metals obtaining compared to mining from ores. Spent automotive catalyst is a rich source of platinum group metals [PGM: platinum (Pt), palladium (Pd), and rhodium (Rh)] which contains higher concentrations of PGM than found in natural ores. This review presents the analysis of the recovery methods of platinum group metals from spent catalysts and their advantages and disadvantages. As a result, all methods were analyzed and the most promising (most environmentally friendly and economical) was pointed out.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii