Gotowa bibliografia na temat „Plasmonic silicon solar cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Plasmonic silicon solar cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Plasmonic silicon solar cells"
WANG, BAOMIN, TONGCHUAN GAO i PAUL W. LEU. "COMPUTATIONAL SIMULATIONS OF NANOSTRUCTURED SOLAR CELLS". Nano LIFE 02, nr 02 (czerwiec 2012): 1230007. http://dx.doi.org/10.1142/s1793984411000517.
Pełny tekst źródłaHe, Jinna, Chunzhen Fan, Junqiao Wang, Yongguang Cheng, Pei Ding i Erjun Liang. "Plasmonic Nanostructure for Enhanced Light Absorption in Ultrathin Silicon Solar Cells". Advances in OptoElectronics 2012 (5.11.2012): 1–8. http://dx.doi.org/10.1155/2012/592754.
Pełny tekst źródłaKumawat, Uttam K., Kamal Kumar, Sumakesh Mishra i Anuj Dhawan. "Plasmonic-enhanced microcrystalline silicon solar cells". Journal of the Optical Society of America B 37, nr 2 (29.01.2020): 495. http://dx.doi.org/10.1364/josab.378946.
Pełny tekst źródłaSingh, Y. Premkumar, Amit Jain i Avinashi Kapoor. "Localized Surface Plasmons Enhanced Light Transmission into c-Silicon Solar Cells". Journal of Solar Energy 2013 (24.07.2013): 1–6. http://dx.doi.org/10.1155/2013/584283.
Pełny tekst źródłaSabuktagin, Mohammed Shahriar, Khairus Syifa Hamdan, Khaulah Sulaiman, Rozalina Zakaria i Harith Ahmad. "Long Wavelength Plasmonic Absorption Enhancement in Silicon Using Optical Lithography Compatible Core-Shell-Type Nanowires". International Journal of Photoenergy 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/249476.
Pełny tekst źródłaHo, Wen-Jeng, Guan-Yu Chen i Jheng-Jie Liu. "Enhancing Photovoltaic Performance of Plasmonic Silicon Solar Cells with ITO Nanoparticles Dispersed in SiO2 Anti-Reflective Layer". Materials 12, nr 10 (16.05.2019): 1614. http://dx.doi.org/10.3390/ma12101614.
Pełny tekst źródłaMamykin, S., I. Mamontova, N. Kotova, O. Kondratenko, T. Barlas, V. Romanyuk, P. P. Smertenko i N. Roshchina. "Nanocomposite solar cells based on organic/inorganic (clonidine/Si) heterojunction with plasmonic Au nanoparticles". Physics and Chemistry of Solid State 21, nr 3 (29.09.2020): 390–98. http://dx.doi.org/10.15330/pcss.21.3.390-398.
Pełny tekst źródłaHo, Wen Jeng, Yi Yu Lee i Yuan Tsz Chen. "Characterization of Plasmonic Silicon Solar Cells Using Indium Nanoparticles/TiO2 Space Layer Structure". Advanced Materials Research 684 (kwiecień 2013): 16–20. http://dx.doi.org/10.4028/www.scientific.net/amr.684.16.
Pełny tekst źródłaGao, Tongchuan, Baomin Wang i Paul W. Leu. "Plasmonic nanomesh sandwiches for ultrathin film silicon solar cells". Journal of Optics 19, nr 2 (30.12.2016): 025901. http://dx.doi.org/10.1088/2040-8986/19/2/025901.
Pełny tekst źródłaHo, Wen-Jeng, Wei-Chen Lin, Jheng-Jie Liu, Hong-Jhang Syu i Ching-Fuh Lin. "Enhancing the Performance of Textured Silicon Solar Cells by Combining Up-Conversion with Plasmonic Scattering". Energies 12, nr 21 (28.10.2019): 4119. http://dx.doi.org/10.3390/en12214119.
Pełny tekst źródłaRozprawy doktorskie na temat "Plasmonic silicon solar cells"
Crudgington, Lee. "High-performance amorphous silicon solar cells with plasmonic light scattering". Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/390381/.
Pełny tekst źródłaPaetzold, Ulrich W. [Verfasser]. "Light trapping with plasmonic back contacts in thin-film Silicon solar cells / Ulrich Wilhelm Paetzold". Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://d-nb.info/103710661X/34.
Pełny tekst źródłaMorawiec, Seweryn. "Self-assembled Plasmonic Nanostructures for Thin Film Photovoltaics". Doctoral thesis, Università di Catania, 2016. http://hdl.handle.net/10761/3971.
Pełny tekst źródłaLükermann, Florian [Verfasser]. "Plasmon supported defect absorption in amorphous silicon thin film solar cells and devices / Florian Lükermann". Bielefeld : Universitaetsbibliothek Bielefeld, 2013. http://d-nb.info/1036112136/34.
Pełny tekst źródłaLi, Xuanhua, i 李炫华. "Plasmonic-enhanced organic solar cells". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/197526.
Pełny tekst źródłapublished_or_final_version
Electrical and Electronic Engineering
Doctoral
Doctor of Philosophy
Lal, Niraj Narsey. "Enhancing solar cells with plasmonic nanovoids". Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/243864.
Pełny tekst źródłaCao, Zhixiong. "Silver nanoprisms in plasmonic organic solar cells". Thesis, Ecole centrale de Marseille, 2014. http://www.theses.fr/2014ECDM0015/document.
Pełny tekst źródłaNowadays there has been a strong global demand for renewable and clean energy due to the rapid consumption of non-renewable fossil fuels and the resulting greenhouse effect. One promising solution to harvest clean and renewable energy is to utilize solar cells to convert the energy of sunlight directly into electricity. Compared to their inorganic counterparts, organic solar cells (OSCs) are now of intensive research interest due to advantages such as light weight, flexibility, the compatibility to low-cost manufacturing processes. Despite these advantages, the power conversion efficiency (PCE) of OSCs still has to be improved for large-scale commercialization. OSCs are made of thin film stacks comprising electrodes, electron transporting layer, active polymer layer and hole transporting layer. In this study, we are concerned with PEDOT:PSS layer which is commonly used as a buffer layer between the anodic electrode and the organic photoactive layer of the OSC thin film stack. We incorporated different concentrations of silver nanoprisms (NPSMs) of sub-wavelength dimension into PEDOT:PSS. The purpose is to take advantage of the unique optical properties of Ag MPSMs arisen from localized surface plasmon resonance (LSPR) to enhance the light harvest and the charge generation efficiency by optimizing absorption and scattering of light in OSCs. We found that the key factors controlling the device performance of plasmonic solar cells include not only the optical properties but also the structural and electrical properties of the resulting hybrid PEDOT:PSS-Ag-NPSM-films. On one hand, the addition of Ag NPSMs led to (1) an increased optical absorption; (2) light scattering at high angles which could possibly lead to more efficient light harvest in OSCs. On the other hand, the following results have been found in the hybrid films: (1) the surface roughness was found to be increased due to the formation of Ag agglomerates, leading to increased charge collection efficiency; (2) the global sheet resistance of the hybrid films also increases due to the excess poly(sodium styrenesulphonate) introduced by incompletely purified Ag NPSMs, resulting in lower short circuit current (Jsc); (3) the Ag nanoprisms and their agglomerates at the PEDOT:PSS/photoactive layer interface could act as recombination centers, leading to reductions in shunt resistance, Jsc and open circuit voltage (Voc). In order to partially counteract the disadvantage (2) and (3), by incorporating further purified Ag NPSMs and/or a small amount of glycerol into PEDOT:PSS, the sheet resistance of hybrid PEDOT:PSS-Ag-NPSM-films was reduced to a resistance value comparable to or lower than that of pristine film
Søiland, Anne Karin. "Silicon for Solar Cells". Doctoral thesis, Norwegian University of Science and Technology, Department of Materials Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-565.
Pełny tekst źródłaThis thesis work consists of two parts, each with a different motivation. Part II is the main part and was partly conducted in industry, at ScanWafer ASA’s plant no.2 in Glomfjord.
The large growth in the Photo Voltaic industry necessitates a dedicated feedstock for this industry, a socalled Solar Grade (SoG) feedstock, since the currently used feedstock rejects from the electronic industry can not cover the demand. Part I of this work was motivated by this urge for a SoG- feedstock. It was a cooperation with the Sintef Materials and Chemistry group, where the aim was to study the kinetics of the removal reactions for dissolved carbon and boron in a silicon melt by oxidative gas treatment. The main focus was on carbon, since boron may be removed by other means. A plasma arc was employed in combination with inductive heating. The project was, however, closed after only two experiments. The main observations from these two experiments were a significant boron removal, and the formation of a silica layer on the melt surface when the oxygen content in the gas was increased from 2 to 4 vol%. This silica layer inhibited further reactions.
Multi-crystalline (mc) silicon produced by directional solidification constitutes a large part of the solar cell market today. Other techniques are emerging/developing and to keep its position in the market it is important to stay competitive. Therefore increasing the knowledge on the material produced is necessary. Gaining knowledge also on phenomenas occurring during the crystallisation process can give a better process control.
Part II of this work was motivated by the industry reporting high inclusion contents in certain areas of the material. The aim of the work was to increase the knowledge of inclusion formation in this system. The experimental work was divided into three different parts;
1) Inclusion study
2) Extraction of melt samples during crystallisation, these were to be analysed for carbon- and nitrogen. Giving thus information of the contents in the liquid phase during soldification.
3) Fourier Transform Infrared Spectroscopy (FTIR)-measurements of the substitutional carbon contents in wafers taken from similar height positions as the melt samples. Giving thus information of the dissolved carbon content in the solid phase.
The inclusion study showed that the large inclusions found in this material are β-SiC and β-Si3N4. They appear in particularly high quantities in the top-cuts. The nitrides grow into larger networks, while the carbide particles tend to grow on the nitrides. The latter seem to act as nucleating centers for carbide precipitation. The main part of inclusions in the topcuts lie in the size range from 100- 1000 µm in diameter when measured by the Coulter laser diffraction method.
A method for sampling of the melt during crystallisation under reduced pressure was developed, giving thus the possibility of indicating the bulk concentration in the melt of carbon and nitrogen. The initial carbon concentration was measured to ~30 and 40 ppm mass when recycled material was employed in the charge and ~ 20 ppm mass when no recycled material was added. Since the melt temperature at this initial stage is ~1500 °C these carbon levels are below the solubility limit. The carbon profiles increase with increasing fraction solidified. For two profiles there is a tendency of decreasing contents at high fraction solidified.
For nitrogen the initial contents were 10, 12 and 44 ppm mass. The nitrogen contents tend to decrease with increasing fraction solidified. The surface temperature also decreases with increasing fraction solidified. Indicating that the melt is saturated with nitrogen already at the initial stage. The proposed mechanism of formation is by dissolution of coating particles, giving a saturated melt, where β-Si3N4 precipitates when cooling. Supporting this mechanism are the findings of smaller nitride particles at low fraction solidified, that the precipitated phase are β-particles, and the decreasing nitrogen contents with increasing fraction solidified.
The carbon profile for the solid phase goes through a maximum value appearing at a fraction solidified from 0.4 to 0.7. The profiles flatten out after the peak and attains a value of ~ 8 ppma. This drop in carbon content is associated with a precipitation of silicon carbide. It is suggested that the precipitation of silicon carbide occurs after a build-up of carbon in the solute boundary layer.
FTIR-measurements for substitutional carbon and interstitial oxygen were initiated at the institute as a part of the work. A round robin test was conducted, with the Energy Research Centre of the Netherlands (ECN) and the University of Milano-Bicocci (UniMiB) as the participants. The measurements were controlled against Secondary Ion Mass Spectrometer analyses. For oxygen the results showed a good correspondence between the FTIR-measurements and the SIMS. For carbon the SIMS-measurements were significantly lower than the FTIR-measurements. This is probably due to the low resistivity of the samples (~1 Ω cm), giving free carrier absorption and an overestimation of the carbon content.
Essner, Jeremy. "Dye sensitized solar cells: optimization of Grätzel solar cells towards plasmonic enhanced photovoltaics". Thesis, Kansas State University, 2011. http://hdl.handle.net/2097/12416.
Pełny tekst źródłaDepartment of Chemistry
Jun Li
With the worldly consumption of energy continually increasing and the main source of this energy, fossil fuels, slowly being depleted, the need for alternate sources of energy is becoming more and more pertinent. One promising approach for an alternate method of producing energy is using solar cells to convert sunlight into electrical energy through photovoltaic processes. Currently, the most widely commercialized solar cell is based on a single p-n junction with silicon. Silicon solar cells are able to obtain high efficiencies but the downfall is, in order to achieve this performance, expensive fabrication techniques and high purity materials must be employed. An encouraging cheaper alternative to silicon solar cells is the dye-sensitized solar cell (DSSC) which is based on a wide band gap semiconductor sensitized with a visible light absorbing species. While DSSCs are less expensive, their efficiencies are still quite low compared to silicon. In this thesis, Grätzel cells (DSSCs based on TiO2 NPs) were fabricated and optimized to establish a reliable standard for further improvement. Optimized single layer GSCs and double layer GSCs showing efficiencies >4% and efficiencies of ~6%, respectively, were obtained. Recently, the incorporation of metallic nanoparticles into silicon solar cells has shown improved efficiency and lowered material cost. By utilizing their plasmonic properties, incident light can be scattered, concentrated, or trapped thereby increasing the effective path length of the cell and allowing the physical thickness of the cell to be reduced. This concept can also be applied to DSSCs, which are cheaper and easier to fabricate than Si based solar cells but are limited by lower efficiency. By incorporating 20 nm diameter Au nanoparticles (Au NPs) into DSSCs at the FTO/TiO2 interface as sub wavelength antennae, average photocurrent enhancements of 14% (maximum up to ~32%) and average efficiency enhancements of 13% (maximum up to ~23% ) were achieved with well dispersed, low surface coverages of nanoparticles. However the Au nanoparticle solar cell (AuNPSC) performance is very sensitive to the surface coverage, the extent of nanoparticle aggregation, and the electrolyte employed, all of which can lead to detrimental effects (decreased performances) on the devices.
Uprety, Prakash. "Plasmonic Enhancement in PbS Quantum Dot Solar Cells". Bowling Green State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1403022047.
Pełny tekst źródłaKsiążki na temat "Plasmonic silicon solar cells"
Wilfried G. J. H. M. Sark. Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Znajdź pełny tekst źródłaWu, Bo, Nripan Mathews i Tze-Chien Sum. Plasmonic Organic Solar Cells. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2021-6.
Pełny tekst źródłaZaidi, Saleem Hussain. Crystalline Silicon Solar Cells. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73379-7.
Pełny tekst źródłaGoetzberger, Adolf, Joachim Knobloch i Bernhard Voß. Crystalline Silicon Solar Cells. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781119033769.
Pełny tekst źródłaTakahashi, K. Amorphous silicon solar cells. London: North Oxford Academic, 1986.
Znajdź pełny tekst źródłaCrystalline silicon solar cells. Chichester: Wiley, 1998.
Znajdź pełny tekst źródłaHann, Geoff. Amorphous silicon solar cells. East Perth, W.A: Minerals and Energy Research Institute of Western Australia, 1997.
Znajdź pełny tekst źródłaAmorphous silicon solar cells. New York: Wiley, 1986.
Znajdź pełny tekst źródłaFahrner, Wolfgang Rainer, red. Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37039-7.
Pełny tekst źródłaFahrner, Wolfgang Rainer. Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Znajdź pełny tekst źródłaCzęści książek na temat "Plasmonic silicon solar cells"
Pudasaini, Pushpa Raj, i Arturo A. Ayon. "Design Guidelines for High Efficiency Plasmonics Silicon Solar Cells". W High-Efficiency Solar Cells, 497–514. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01988-8_16.
Pełny tekst źródłaKhanna, Vinod Kumar. "Plasmonic-Enhanced Solar Cells". W Nano-Structured Photovoltaics, 107–33. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003215158-7.
Pełny tekst źródłaZweibel, Ken. "Silicon Cells". W Harnessing Solar Power, 101–11. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-6110-5_6.
Pełny tekst źródłaZweibel, Ken. "Silicon Cells". W Harnessing Solar Power, 113–27. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-6110-5_7.
Pełny tekst źródłaWu, Bo, Nripan Mathews i Tze-Chien Sum. "Introduction". W Plasmonic Organic Solar Cells, 1–23. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2021-6_1.
Pełny tekst źródłaWu, Bo, Nripan Mathews i Tze-Chien Sum. "Surface Plasmon Resonance". W Plasmonic Organic Solar Cells, 25–31. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2021-6_2.
Pełny tekst źródłaWu, Bo, Nripan Mathews i Tze-Chien Sum. "Characterization Plasmonic Organic Photovoltaic Devices". W Plasmonic Organic Solar Cells, 33–46. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2021-6_3.
Pełny tekst źródłaWu, Bo, Nripan Mathews i Tze-Chien Sum. "Plasmonic Entities within the Charge Transporting Layer". W Plasmonic Organic Solar Cells, 47–80. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2021-6_4.
Pełny tekst źródłaWu, Bo, Nripan Mathews i Tze-Chien Sum. "Plasmonic Entities within the Active Layer". W Plasmonic Organic Solar Cells, 81–100. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2021-6_5.
Pełny tekst źródłaWu, Bo, Nripan Mathews i Tze-Chien Sum. "Concluding Remarks". W Plasmonic Organic Solar Cells, 101–6. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2021-6_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Plasmonic silicon solar cells"
Hejazi, F., S. Y. Ding, Y. Sun, A. Bottomley, A. Ianoul i W. N. Ye. "Design of plasmonic enhanced silicon-based solar cells". W Photonics North 2012, redaktor Jean-Claude Kieffer. SPIE, 2012. http://dx.doi.org/10.1117/12.2006549.
Pełny tekst źródłaShahin, Shiva, Palash Gangopadhyay i Robert A. Norwood. "Efficiency Improvement in Ultrathin Plasmonic Organic Bulk Heterojunction Solar Cells". W Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/iprsn.2012.iw2c.2.
Pełny tekst źródłaImam, Muzaffar, Syed Sadique Anwer Askari, Manoj Kumar, Tauseef Ahmed i Mukul Kumar Das. "Plasmonic Effect on Microcrystalline Silicon Solar Cell for Light Absorption Enhancement". W JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2019. http://dx.doi.org/10.1364/jsap.2019.18a_e208_7.
Pełny tekst źródłaDeVault, C., U. Guler, G. V. Naik, V. Shalaev, A. Boltasseva i A. V. Kildishev. "Plasmonic Metal Nitrides for Thin-Film Silicon Solar Cells". W Freeform Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/freeform.2013.jm3a.3.
Pełny tekst źródłaJovanov, Vladislav, Rahul Dewan, Ujwol Palanchoke i Dietmar Knipp. "Plasmonic effects in microcrystalline silicon thin-film solar cells". W 2011 IEEE Photonics Conference (IPC). IEEE, 2011. http://dx.doi.org/10.1109/pho.2011.6110803.
Pełny tekst źródłaKumawat, Uttam K., Akanksha Ninawe, Kamal Kumar i Anuj Dhawan. "Plasmonic nanostructures for enhanced performance of microcrystalline silicon solar cells". W Physics, Simulation, and Photonic Engineering of Photovoltaic Devices IX, redaktorzy Alexandre Freundlich, Masakazu Sugiyama i Stéphane Collin. SPIE, 2020. http://dx.doi.org/10.1117/12.2546804.
Pełny tekst źródłaJia, Zhenhui, Changhong Liu i Ben Q. Li. "Nanoparticle-Enhanced Plasmonic Light Absorption in Thin-Film Silicon Solar Cells". W ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36182.
Pełny tekst źródłaPaetzold, U. W., E. Moulin, B. E. Pieters, U. Rau i R. Carius. "Optical simulations and prototyping of microcrystalline silicon solar cells with integrated plasmonic reflection grating back contacts". W SPIE Solar Energy + Technology, redaktor Loucas Tsakalakos. SPIE, 2011. http://dx.doi.org/10.1117/12.893749.
Pełny tekst źródłaAskari, Syed Sadique Anwer, Manoj Kumar, Muzaffar Imam, Tauseef Ahmed i Mukul Kumar Das. "Performance analysis of Plasmonic based ZnO/Silicon Thin-Film Heterojunction Solar cell". W JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2018. http://dx.doi.org/10.1364/jsap.2018.19a_211b_8.
Pełny tekst źródłaVeenkamp, R., S. Ding, I. Smith i W. N. Ye. "Silicon solar cell enhancement by plasmonic silver nanocubes". W SPIE OPTO, redaktorzy Alexandre Freundlich i Jean-François Guillemoles. SPIE, 2014. http://dx.doi.org/10.1117/12.2038649.
Pełny tekst źródłaRaporty organizacyjne na temat "Plasmonic silicon solar cells"
Hall, R. B., C. Bacon, V. DiReda, D. H. Ford, A. E. Ingram, J. Cotter, T. Hughes-Lampros, J. A. Rand, T. R. Ruffins i A. M. Barnett. Thin silicon solar cells. Office of Scientific and Technical Information (OSTI), grudzień 1992. http://dx.doi.org/10.2172/10121623.
Pełny tekst źródłaSinton, R. A., A. Cuevas, R. R. King i R. M. Swanson. High-efficiency concentrator silicon solar cells. Office of Scientific and Technical Information (OSTI), listopad 1990. http://dx.doi.org/10.2172/6343818.
Pełny tekst źródłaMcGehee, Michael. Perovskite on Silicon Tandem Solar Cells. Office of Scientific and Technical Information (OSTI), marzec 2021. http://dx.doi.org/10.2172/1830219.
Pełny tekst źródłaBlack, Marcie. Intermediate Bandgap Solar Cells From Nanostructured Silicon. Office of Scientific and Technical Information (OSTI), październik 2014. http://dx.doi.org/10.2172/1163091.
Pełny tekst źródłaBlack, Marcie. Intermediate Bandgap Solar Cells From Nanostructured Silicon. Office of Scientific and Technical Information (OSTI), październik 2014. http://dx.doi.org/10.2172/1163251.
Pełny tekst źródłaHaney, R. E., A. Neugroschel, K. Misiakos i F. A. Lindholm. Frequency-domain transient analysis of silicon solar cells. Office of Scientific and Technical Information (OSTI), marzec 1989. http://dx.doi.org/10.2172/6346849.
Pełny tekst źródłaRohatgi, A., A. W. Smith i J. Salami. Modelling and fabrication of high-efficiency silicon solar cells. Office of Scientific and Technical Information (OSTI), październik 1991. http://dx.doi.org/10.2172/10104501.
Pełny tekst źródłaHall, R. B., C. Bacon, V. DiReda, D. H. Ford, A. E. Ingram, S. M. Lampo, J. A. Rand, T. R. Ruffins i A. M. Barnett. Silicon-film{trademark} on ceramic solar cells. Final report. Office of Scientific and Technical Information (OSTI), luty 1993. http://dx.doi.org/10.2172/10135001.
Pełny tekst źródłaRand, J. A., A. M. Barnett i J. C. Checchi. Large-area Silicon-Film{trademark} panels and solar cells. Office of Scientific and Technical Information (OSTI), styczeń 1997. http://dx.doi.org/10.2172/453487.
Pełny tekst źródłaAlbright, C. E., i D. O. Holte. Diffusion welding of electrical interconnects to silicon solar cells. Office of Scientific and Technical Information (OSTI), maj 1989. http://dx.doi.org/10.2172/6300204.
Pełny tekst źródła