Artykuły w czasopismach na temat „Plasmonic sensing and catalysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Plasmonic sensing and catalysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Genç, Aziz, Javier Patarroyo, Jordi Sancho-Parramon, Neus G. Bastús, Victor Puntes i Jordi Arbiol. "Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications". Nanophotonics 6, nr 1 (6.01.2017): 193–213. http://dx.doi.org/10.1515/nanoph-2016-0124.
Pełny tekst źródłaTittl, Andreas, Harald Giessen i Na Liu. "Plasmonic gas and chemical sensing". Nanophotonics 3, nr 3 (1.06.2014): 157–80. http://dx.doi.org/10.1515/nanoph-2014-0002.
Pełny tekst źródłaDong, Jun, Zhenglong Zhang, Hairong Zheng i Mentao Sun. "Recent Progress on Plasmon-Enhanced Fluorescence". Nanophotonics 4, nr 4 (30.12.2015): 472–90. http://dx.doi.org/10.1515/nanoph-2015-0028.
Pełny tekst źródłaKhairullina, Evgeniia, Kseniia Mosina, Rachelle M. Choueiri, Andre Philippe Paradis, Ariel Alcides Petruk, German Sciaini, Elena Krivoshapkina, Anna Lee, Aftab Ahmed i Anna Klinkova. "An aligned octahedral core in a nanocage: synthesis, plasmonic, and catalytic properties". Nanoscale 11, nr 7 (2019): 3138–44. http://dx.doi.org/10.1039/c8nr09731c.
Pełny tekst źródłaDo, T. Anh Thu, Truong Giang Ho, Thu Hoai Bui, Quang Ngan Pham, Hong Thai Giang, Thi Thu Do, Duc Van Nguyen i Dai Lam Tran. "Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices". Beilstein Journal of Nanotechnology 9 (1.03.2018): 771–79. http://dx.doi.org/10.3762/bjnano.9.70.
Pełny tekst źródłaChen, Linmin, Meihuang Zeng, Jingwen Jin, Qiuhong Yao, Tingxiu Ye, Longjie You, Xi Chen, Xiaomei Chen i Zhiyong Guo. "Nanoenzyme Reactor-Based Oxidation-Induced Reaction for Quantitative SERS Analysis of Food Antiseptics". Biosensors 12, nr 11 (8.11.2022): 988. http://dx.doi.org/10.3390/bios12110988.
Pełny tekst źródłaZhang, Xinxin, Hongyue Huo, Kongshuo Ma i Zhenlu Zhao. "Reduced graphene oxide-supported smart plasmonic AgPtPd porous nanoparticles for high-performance electrochemical detection of 2,4,6-trinitrotoluene". New Journal of Chemistry 46, nr 15 (2022): 7161–67. http://dx.doi.org/10.1039/d2nj00434h.
Pełny tekst źródłaLarsson, Elin M., Svetlana Syrenova i Christoph Langhammer. "Nanoplasmonic sensing for nanomaterials science". Nanophotonics 1, nr 3-4 (1.12.2012): 249–66. http://dx.doi.org/10.1515/nanoph-2012-0029.
Pełny tekst źródłaAyivi, Raphael D., Bukola O. Adesanmi, Eric S. McLamore, Jianjun Wei i Sherine O. Obare. "Molecularly Imprinted Plasmonic Sensors as Nano-Transducers: An Effective Approach for Environmental Monitoring Applications". Chemosensors 11, nr 3 (22.03.2023): 203. http://dx.doi.org/10.3390/chemosensors11030203.
Pełny tekst źródłaQuazi, Mohzibudin Z., Taeyoung Kim, Jinhwan Yang i Nokyoung Park. "Tuning Plasmonic Properties of Gold Nanoparticles by Employing Nanoscale DNA Hydrogel Scaffolds". Biosensors 13, nr 1 (24.12.2022): 20. http://dx.doi.org/10.3390/bios13010020.
Pełny tekst źródłaMatsuura, Ryo, Keiko Tawa, Yukiya Kitayama i Toshifumi Takeuchi. "A plasmonic chip-based bio/chemical hybrid sensing system for the highly sensitive detection of C-reactive protein". Chemical Communications 52, nr 20 (2016): 3883–86. http://dx.doi.org/10.1039/c5cc07868g.
Pełny tekst źródłaVasiljevic, Natasa, Vinicius Cruz San Martin i Andrei Sarua. "Electrodeposition of Plasmonic Nanostructures". ECS Meeting Abstracts MA2022-02, nr 23 (9.10.2022): 985. http://dx.doi.org/10.1149/ma2022-0223985mtgabs.
Pełny tekst źródłaLo, Tzu-Hsuan, Pen-Yuan Shih i Chiu-Hsien Wu. "The Response of UV/Blue Light and Ozone Sensing Using Ag-TiO2 Planar Nanocomposite Thin Film". Sensors 19, nr 23 (20.11.2019): 5061. http://dx.doi.org/10.3390/s19235061.
Pełny tekst źródłaYan, Guojuan, Huanhuan Ni, Xiaoxiao Li, Xiaolan Qi, Xi Yang i Hongyan Zou. "Plasmonic Cu2−xSe Mediated Colorimetric/Photothermal Dual-Readout Detection of Glutathione". Nanomaterials 13, nr 11 (1.06.2023): 1787. http://dx.doi.org/10.3390/nano13111787.
Pełny tekst źródłaJeong, Hyeon-Ho, Andrew G. Mark i Peer Fischer. "Magnesium plasmonics for UV applications and chiral sensing". Chemical Communications 52, nr 82 (2016): 12179–82. http://dx.doi.org/10.1039/c6cc06800f.
Pełny tekst źródłaLi, Jun, i Nicholas A. Kotov. "Circular extinction of plasmonic silver nanocaps and gas sensing". Faraday Discussions 186 (2016): 345–52. http://dx.doi.org/10.1039/c5fd00138b.
Pełny tekst źródłaWei, Zheng-Nan, Zhi-Hong Mo, Xiao-Li Pu i Yi-Chong Xu. "Plasmonic swings during the Fenton reaction: catalytic sensing of organics in water via fullerene-decorated gold nanoparticles". Chemical Communications 51, nr 61 (2015): 12231–34. http://dx.doi.org/10.1039/c5cc03284a.
Pełny tekst źródłaJuneja, Subhavna, Jaspal Singh, Roshni Thapa, R. K. Soni i Jaydeep Bhattacharya. "Improved SERS sensing on biosynthetically grown self-cleaning plasmonic ZnO nano-leaves". New Journal of Chemistry 45, nr 44 (2021): 20895–903. http://dx.doi.org/10.1039/d1nj02883a.
Pełny tekst źródłaChen, Jennifer I. L., Yeechi Chen i David S. Ginger. "Plasmonic Nanoparticle Dimers for Optical Sensing of DNA in Complex Media". Journal of the American Chemical Society 132, nr 28 (21.07.2010): 9600–9601. http://dx.doi.org/10.1021/ja103240g.
Pełny tekst źródłaPolo, Ester, Pablo del Pino, Beatriz Pelaz, Valeria Grazu i Jesus M. de la Fuente. "Plasmonic-driven thermal sensing: ultralow detection of cancer markers". Chemical Communications 49, nr 35 (2013): 3676. http://dx.doi.org/10.1039/c3cc39112d.
Pełny tekst źródłaJurkšaitis, Povilas, Ernesta Bužavaitė-Vertelienė i Zigmas Balevičius. "Strong Coupling between Surface Plasmon Resonance and Exciton of Labeled Protein–Dye Complex for Immunosensing Applications". International Journal of Molecular Sciences 24, nr 3 (19.01.2023): 2029. http://dx.doi.org/10.3390/ijms24032029.
Pełny tekst źródłaLi, Hui, Xin Xia, Chengxiang Guo, Lei Ge i Feng Li. "Laser-induced nano-bismuth decorated CdS–graphene hybrid for plasmon-enhanced photoelectrochemical analysis". Chemical Communications 56, nr 89 (2020): 13784–87. http://dx.doi.org/10.1039/d0cc05907b.
Pełny tekst źródłaDuan, Huiyu, Tong Wang, Ziyun Su, Huan Pang i Changyun Chen. "Recent progress and challenges in plasmonic nanomaterials". Nanotechnology Reviews 11, nr 1 (1.01.2022): 846–73. http://dx.doi.org/10.1515/ntrev-2022-0039.
Pełny tekst źródłaTim, Beata, Paulina Błaszkiewicz i Michał Kotkowiak. "Recent Advances in Metallic Nanoparticle Assemblies for Surface-Enhanced Spectroscopy". International Journal of Molecular Sciences 23, nr 1 (28.12.2021): 291. http://dx.doi.org/10.3390/ijms23010291.
Pełny tekst źródłaTabassum, Sadia, Saira Naz, Amjad Nisar, Hongyu Sun, Shafqat Karim, Maaz Khan, Shiasta Shahzada, Ata ur Rahman i Mashkoor Ahmad. "Synergic effect of plasmonic gold nanoparticles and graphene oxide on the performance of glucose sensing". New Journal of Chemistry 43, nr 47 (2019): 18925–34. http://dx.doi.org/10.1039/c9nj04532e.
Pełny tekst źródłaSapunova, Anastasiia A., Yulia I. Yandybaeva, Roman A. Zakoldaev, Alexandra V. Afanasjeva, Olga V. Andreeva, Igor A. Gladskikh, Tigran A. Vartanyan i Daler R. Dadadzhanov. "Laser-Induced Chirality of Plasmonic Nanoparticles Embedded in Porous Matrix". Nanomaterials 13, nr 10 (13.05.2023): 1634. http://dx.doi.org/10.3390/nano13101634.
Pełny tekst źródłaMamonova, Daria V., Anna A. Vasileva, Yuri V. Petrov, Alexandra V. Koroleva, Denis V. Danilov, Ilya E. Kolesnikov, Gulia I. Bikbaeva, Julien Bachmann i Alina A. Manshina. "Single Step Laser-Induced Deposition of Plasmonic Au, Ag, Pt Mono-, Bi- and Tri-Metallic Nanoparticles". Nanomaterials 12, nr 1 (31.12.2021): 146. http://dx.doi.org/10.3390/nano12010146.
Pełny tekst źródłaScroccarello, Annalisa, Flavio Della Pelle i Dario Compagnone. "Lab-on-a-Tip Based on a Bimetallic Nanoarchitecture Enabling Catalytic 4-Nitrophenol Switch-off". Proceedings 60, nr 1 (2.11.2020): 4. http://dx.doi.org/10.3390/iecb2020-07083.
Pełny tekst źródłaLiu, Yu, Fangfang Wang, Yawen Liu, Lu Cao, Haiming Hu, Xiaowei Yao, Junping Zheng i Hongtao Liu. "A label-free plasmonic nanosensor driven by horseradish peroxidase-assisted tetramethylbenzidine redox catalysis for colorimetric sensing H2O2 and cholesterol". Sensors and Actuators B: Chemical 389 (sierpień 2023): 133893. http://dx.doi.org/10.1016/j.snb.2023.133893.
Pełny tekst źródłaZhang, Bin, Xiaoming Wang, Wei Hu, Yiquan Liao, Yichang He, Bohua Dong, Minggang Zhao i Ye Ma. "SPR-Enhanced Au@Fe3O4 Nanozyme for the Detection of Hydroquinone". Chemosensors 11, nr 7 (14.07.2023): 392. http://dx.doi.org/10.3390/chemosensors11070392.
Pełny tekst źródłaDoan, Mai Quan, Nguyen Ha Anh, Hoang Van Tuan, Nguyen Cong Tu, Nguyen Huu Lam, Nguyen Tien Khi, Vu Ngoc Phan, Pham Duc Thang i Anh-Tuan Le. "Improving SERS Sensing Efficiency and Catalytic Reduction Activity in Multifunctional Ternary Ag-TiO2-GO Nanostructures: Roles of Electron Transfer Process on Performance Enhancement". Adsorption Science & Technology 2021 (1.10.2021): 1–13. http://dx.doi.org/10.1155/2021/1169599.
Pełny tekst źródłaWang, Chenxu, Yan Du, Qiong Wu, Shuguang Xuan, Jiajing Zhou, Jibin Song, Fangwei Shao i Hongwei Duan. "Stimuli-responsive plasmonic core–satellite assemblies: i-motif DNA linker enabled intracellular pH sensing". Chemical Communications 49, nr 51 (2013): 5739. http://dx.doi.org/10.1039/c3cc80005a.
Pełny tekst źródłaLiao, Qingwei, Wei Si, Jingxin Zhang, Hanchen Sun i Lei Qin. "In Situ Silver Nanonets for Flexible Stretchable Electrodes". International Journal of Molecular Sciences 24, nr 11 (26.05.2023): 9319. http://dx.doi.org/10.3390/ijms24119319.
Pełny tekst źródłaKarmaoui, Mohamed, Luc Lajaunie, David Maria Tobaldi, Gianluca Leonardi, Chahinez Benbayer, Raul Arenal, João A. Labrincha i Giovanni Neri. "Modification of anatase using noble-metals (Au, Pt, Ag): Toward a nanoheterojunction exhibiting simultaneously photocatalytic activity and plasmonic gas sensing". Applied Catalysis B: Environmental 218 (grudzień 2017): 370–84. http://dx.doi.org/10.1016/j.apcatb.2017.06.010.
Pełny tekst źródłaMurphy, Catherine J., Tapan K. Sau, Anand Gole i Christopher J. Orendorff. "Surfactant-Directed Synthesis and Optical Properties of One-Dimensional Plasmonic Metallic Nanostructures". MRS Bulletin 30, nr 5 (maj 2005): 349–55. http://dx.doi.org/10.1557/mrs2005.97.
Pełny tekst źródłaZhang, Chao, Zhaoxiang Li, Si Qiu, Weixi Lu, Mingrui Shao, Chang Ji, Guangcan Wang, Xiaofei Zhao, Jing Yu i Zhen Li. "Highly ordered arrays of hat-shaped hierarchical nanostructures with different curvatures for sensitive SERS and plasmon-driven catalysis". Nanophotonics 11, nr 1 (15.11.2021): 33–44. http://dx.doi.org/10.1515/nanoph-2021-0476.
Pełny tekst źródłaGurbatov, Stanislav, Vladislav Puzikov, Evgeny Modin, Alexander Shevlyagin, Andrey Gerasimenko, Eugeny Mitsai, Sergei A. Kulinich i Aleksandr Kuchmizhak. "Ag-Decorated Si Microspheres Produced by Laser Ablation in Liquid: All-in-One Temperature-Feedback SERS-Based Platform for Nanosensing". Materials 15, nr 22 (15.11.2022): 8091. http://dx.doi.org/10.3390/ma15228091.
Pełny tekst źródłaRuffino, Francesco. "Light-Scattering Simulations from Spherical Bimetallic Core–Shell Nanoparticles". Micromachines 12, nr 4 (26.03.2021): 359. http://dx.doi.org/10.3390/mi12040359.
Pełny tekst źródłaTramontano, Chiara, Bruno Miranda, Giovanna Chianese, Luca De Stefano, Carlo Forestiere, Marinella Pirozzi i Ilaria Rea. "Design of Gelatin-Capped Plasmonic-Diatomite Nanoparticles with Enhanced Galunisertib Loading Capacity for Drug Delivery Applications". International Journal of Molecular Sciences 22, nr 19 (5.10.2021): 10755. http://dx.doi.org/10.3390/ijms221910755.
Pełny tekst źródłaDing, Yi, i Mingwei Chen. "Nanoporous Metals for Catalytic and Optical Applications". MRS Bulletin 34, nr 8 (sierpień 2009): 569–76. http://dx.doi.org/10.1557/mrs2009.156.
Pełny tekst źródłaZhou, Xiao‐Li, Yunze Yang, Shaopeng Wang i Xian‐Wei Liu. "Surface Plasmon Resonance Microscopy: From Single‐Molecule Sensing to Single‐Cell Imaging". Angewandte Chemie International Edition 59, nr 5 (27.01.2020): 1776–85. http://dx.doi.org/10.1002/anie.201908806.
Pełny tekst źródłaWang, Luqing, Sharmila N. Shirodkar, Zhuhua Zhang i Boris I. Yakobson. "Defining shapes of two-dimensional crystals with undefinable edge energies". Nature Computational Science 2, nr 11 (28.11.2022): 729–35. http://dx.doi.org/10.1038/s43588-022-00347-5.
Pełny tekst źródłaPedrueza-Villalmanzo, Esteban, Francesco Pineider i Alexandre Dmitriev. "Perspective: plasmon antennas for nanoscale chiral chemistry". Nanophotonics 9, nr 2 (25.02.2020): 481–89. http://dx.doi.org/10.1515/nanoph-2019-0430.
Pełny tekst źródłaAslan, Kadir, Patrick Holley, Lydia Davies, Joseph R. Lakowicz i Chris D. Geddes. "Angular-Ratiometric Plasmon-Resonance Based Light Scattering for Bioaffinity Sensing". Journal of the American Chemical Society 127, nr 34 (sierpień 2005): 12115–21. http://dx.doi.org/10.1021/ja052739k.
Pełny tekst źródłaSzunerits, Sabine, i Rabah Boukherroub. "Sensing using localised surface plasmon resonance sensors". Chemical Communications 48, nr 72 (2012): 8999. http://dx.doi.org/10.1039/c2cc33266c.
Pełny tekst źródłaCattabiani, Nicola, Camilla Baratto, Dario Zappa, Elisabetta Comini, Maurizio Donarelli, Matteo Ferroni, Andrea Ponzoni i Guido Faglia. "Tin Oxide Nanowires Decorated with Ag Nanoparticles for Visible Light-Enhanced Hydrogen Sensing at Room Temperature: Bridging Conductometric Gas Sensing and Plasmon-Driven Catalysis". Journal of Physical Chemistry C 122, nr 9 (5.02.2018): 5026–31. http://dx.doi.org/10.1021/acs.jpcc.7b09807.
Pełny tekst źródłaLee, Eunji, Woomi Gwon i Sangwoo Ryu. "Nucleation and Growth-Controlled Morphology Evolution of Cu Nanostructures During High-Pressure Thermal Evaporation". Korean Journal of Metals and Materials 59, nr 2 (5.02.2021): 135–41. http://dx.doi.org/10.3365/kjmm.2021.59.2.135.
Pełny tekst źródłaDahlin, Andreas, Michael Zäch, Tomas Rindzevicius, Mikael Käll, Duncan S. Sutherland i Fredrik Höök. "Localized Surface Plasmon Resonance Sensing of Lipid-Membrane-Mediated Biorecognition Events". Journal of the American Chemical Society 127, nr 14 (kwiecień 2005): 5043–48. http://dx.doi.org/10.1021/ja043672o.
Pełny tekst źródłaRuach-Nir, Irit, Tatyana A. Bendikov, Ilanit Doron-Mor, Zahava Barkay, Alexander Vaskevich i Israel Rubinstein. "Silica-Stabilized Gold Island Films for Transmission Localized Surface Plasmon Sensing". Journal of the American Chemical Society 129, nr 1 (styczeń 2007): 84–92. http://dx.doi.org/10.1021/ja064919f.
Pełny tekst źródłaFagadar-Cosma, Eugenia, Anca Lascu, Sergiu Shova, Mirela-Fernanda Zaltariov, Mihaela Birdeanu, Lilia Croitor, Adriana Balan, Diana Anghel i Serban Stamatin. "X-ray Structure Elucidation of a Pt-Metalloporphyrin and Its Application for Obtaining Sensitive AuNPs-Plasmonic Hybrids Capable of Detecting Triiodide Anions". International Journal of Molecular Sciences 20, nr 3 (7.02.2019): 710. http://dx.doi.org/10.3390/ijms20030710.
Pełny tekst źródła