Gotowa bibliografia na temat „Plasmonic sensing and catalysis”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Plasmonic sensing and catalysis”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Plasmonic sensing and catalysis"

1

Genç, Aziz, Javier Patarroyo, Jordi Sancho-Parramon, Neus G. Bastús, Victor Puntes i Jordi Arbiol. "Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications". Nanophotonics 6, nr 1 (6.01.2017): 193–213. http://dx.doi.org/10.1515/nanoph-2016-0124.

Pełny tekst źródła
Streszczenie:
AbstractMetallic nanostructures have received great attention due to their ability to generate surface plasmon resonances, which are collective oscillations of conduction electrons of a material excited by an electromagnetic wave. Plasmonic metal nanostructures are able to localize and manipulate the light at the nanoscale and, therefore, are attractive building blocks for various emerging applications. In particular, hollow nanostructures are promising plasmonic materials as cavities are known to have better plasmonic properties than their solid counterparts thanks to the plasmon hybridization mechanism. The hybridization of the plasmons results in the enhancement of the plasmon fields along with more homogeneous distribution as well as the reduction of localized surface plasmon resonance (LSPR) quenching due to absorption. In this review, we summarize the efforts on the synthesis of hollow metal nanostructures with an emphasis on the galvanic replacement reaction. In the second part of this review, we discuss the advancements on the characterization of plasmonic properties of hollow nanostructures, covering the single nanoparticle experiments, nanoscale characterization via electron energy-loss spectroscopy and modeling and simulation studies. Examples of the applications, i.e. sensing, surface enhanced Raman spectroscopy, photothermal ablation therapy of cancer, drug delivery or catalysis among others, where hollow nanostructures perform better than their solid counterparts, are also evaluated.
Style APA, Harvard, Vancouver, ISO itp.
2

Tittl, Andreas, Harald Giessen i Na Liu. "Plasmonic gas and chemical sensing". Nanophotonics 3, nr 3 (1.06.2014): 157–80. http://dx.doi.org/10.1515/nanoph-2014-0002.

Pełny tekst źródła
Streszczenie:
AbstractSensitive and robust detection of gases and chemical reactions constitutes a cornerstone of scientific research and key industrial applications. In an effort to reach progressively smaller reagent concentrations and sensing volumes, optical sensor technology has experienced a paradigm shift from extended thin-film systems towards engineered nanoscale devices. In this size regime, plasmonic particles and nanostructures provide an ideal toolkit for the realization of novel sensing concepts. This is due to their unique ability to simultaneously focus light into subwavelength hotspots of the electromagnetic field and to transmit minute changes of the local environment back into the farfield as a modulation of their optical response. Since the basic building blocks of a plasmonic system are commonly noble metal nanoparticles or nanostructures, plasmonics can easily be integrated with a plethora of chemically or catalytically active materials and compounds to investigate processes ranging from hydrogen absorption in palladium to the detection of trinitrotoluene (TNT). In this review, we will discuss a multitude of plasmonic sensing strategies, spanning the technological scale from simple plasmonic particles embedded in extended thin films to highly engineered complex plasmonic nanostructures. Due to their flexibility and excellent sensing performance, plasmonic structures may open an exciting pathway towards the detection of chemical and catalytic events down to the single molecule level.
Style APA, Harvard, Vancouver, ISO itp.
3

Dong, Jun, Zhenglong Zhang, Hairong Zheng i Mentao Sun. "Recent Progress on Plasmon-Enhanced Fluorescence". Nanophotonics 4, nr 4 (30.12.2015): 472–90. http://dx.doi.org/10.1515/nanoph-2015-0028.

Pełny tekst źródła
Streszczenie:
AbstractThe optically generated collective electron density waves on metal–dielectric boundaries known as surface plasmons have been of great scientific interest since their discovery. Being electromagnetic waves on gold or silver nanoparticle’s surface, localised surface plasmons (LSP) can strongly enhance the electromagnetic field. These strong electromagnetic fields near the metal surfaces have been used in various applications like surface enhanced spectroscopy (SES), plasmonic lithography, plasmonic trapping of particles, and plasmonic catalysis. Resonant coupling of LSPs to fluorophore can strongly enhance the emission intensity, the angular distribution, and the polarisation of the emitted radiation and even the speed of radiative decay, which is so-called plasmon enhanced fluorescence (PEF). As a result, more and more reports on surface-enhanced fluorescence have appeared, such as SPASER-s, plasmon assisted lasing, single molecule fluorescence measurements, surface plasmoncoupled emission (SPCE) in biological sensing, optical orbit designs etc. In this review, we focus on recent advanced reports on plasmon-enhanced fluorescence (PEF). First, the mechanism of PEF and early results of enhanced fluorescence observed by metal nanostructure will be introduced. Then, the enhanced substrates, including periodical and nonperiodical nanostructure, will be discussed and the most important factor of the spacer between molecule and surface and wavelength dependence on PEF is demonstrated. Finally, the recent progress of tipenhanced fluorescence and PEF from the rare-earth doped up-conversion (UC) and down-conversion (DC) nanoparticles (NPs) are also commented upon. This review provides an introduction to fundamentals of PEF, illustrates the current progress in the design of metallic nanostructures for efficient fluorescence signal amplification that utilises propagating and localised surface plasmons.
Style APA, Harvard, Vancouver, ISO itp.
4

Khairullina, Evgeniia, Kseniia Mosina, Rachelle M. Choueiri, Andre Philippe Paradis, Ariel Alcides Petruk, German Sciaini, Elena Krivoshapkina, Anna Lee, Aftab Ahmed i Anna Klinkova. "An aligned octahedral core in a nanocage: synthesis, plasmonic, and catalytic properties". Nanoscale 11, nr 7 (2019): 3138–44. http://dx.doi.org/10.1039/c8nr09731c.

Pełny tekst źródła
Streszczenie:
Plasmonic metal nanostructures with complex morphologies provide an important route to tunable optical responses and local electric field enhancement at the nanoscale for a variety of applications including sensing, imaging, and catalysis.
Style APA, Harvard, Vancouver, ISO itp.
5

Do, T. Anh Thu, Truong Giang Ho, Thu Hoai Bui, Quang Ngan Pham, Hong Thai Giang, Thi Thu Do, Duc Van Nguyen i Dai Lam Tran. "Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices". Beilstein Journal of Nanotechnology 9 (1.03.2018): 771–79. http://dx.doi.org/10.3762/bjnano.9.70.

Pełny tekst źródła
Streszczenie:
Pure and Au-decorated sub-micrometer ZnO spheres were successfully grown on glass substrates by simple chemical bath deposition and photoreduction methods. The analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, energy-dispersive X-ray spectroscopy (EDS), UV–vis absorption, and photoluminescence (PL) spectra results were used to verify the incorporation of plasmonic Au nanoparticles (NPs) on the ZnO film. Time-resolved photoluminescence (TRPL) spectra indicated that a surface plasmonic effect exists with a fast rate of charge transfer from Au nanoparticles to the sub-micrometer ZnO sphere, which suggested the strong possibility of the use of the material for the design of efficient catalytic devices. The NO2 sensing ability of as-deposited ZnO films was investigated with different gas concentrations at an optimized sensing temperature of 120 °C. Surface decoration of plasmonic Au nanoparticles provided an enhanced sensitivity (141 times) with improved response (τRes = 9 s) and recovery time (τRec = 39 s). The enhanced gas sensing performance and photocatalytic degradation processes are suggested to be attributed to not only the surface plasmon resonance effect, but also due to a Schottky barrier between plasmonic Au and ZnO structures.
Style APA, Harvard, Vancouver, ISO itp.
6

Chen, Linmin, Meihuang Zeng, Jingwen Jin, Qiuhong Yao, Tingxiu Ye, Longjie You, Xi Chen, Xiaomei Chen i Zhiyong Guo. "Nanoenzyme Reactor-Based Oxidation-Induced Reaction for Quantitative SERS Analysis of Food Antiseptics". Biosensors 12, nr 11 (8.11.2022): 988. http://dx.doi.org/10.3390/bios12110988.

Pełny tekst źródła
Streszczenie:
Nanoenzyme reactors based on shell-isolated colloidal plasmonic nanomaterials are well-established and widely applied in catalysis and surface-enhanced Raman scattering (SERS) sensing. In this study, a “double wing with one body” strategy was developed to establish a reduced food antiseptic sensing method using shell-isolated colloidal plasmonic nanomaterials. Gold nano particles (Au NPs) were used to synthesize the colloidal plasmonic nanomaterials, which was achieved by attaching ferrous ions (Fe2+), ferric ions (Fe3+), nitroso (NO−) group, cyanogen (CN−) group, and dopamine (DA) via coordinative interactions. The oxidation-induced reaction was utilized to generate •OH following the Fe2+-mediated Fenton reaction with the shell-isolated colloidal plasmonic nanomaterials. The •OH generated in the cascade reactor had a high oxidative capacity toward acid preservatives. Importantly, with the introduction of the signal molecule DA, the cascade reactor exhibited also induced a Raman signal change by reaction with the oxidation product (malondialdehyde) which improved the sensitivity of the analysis. In addition, the stable shell-isolated structure was effective in realizing a reproducible and quantitative SERS analysis method, which overcomes previous limitations and could extend the use of nanoenzymes to various complex sensing applications.
Style APA, Harvard, Vancouver, ISO itp.
7

Zhang, Xinxin, Hongyue Huo, Kongshuo Ma i Zhenlu Zhao. "Reduced graphene oxide-supported smart plasmonic AgPtPd porous nanoparticles for high-performance electrochemical detection of 2,4,6-trinitrotoluene". New Journal of Chemistry 46, nr 15 (2022): 7161–67. http://dx.doi.org/10.1039/d2nj00434h.

Pełny tekst źródła
Streszczenie:
Smart plasmonic AgPtPd NPs/rGO exhibited a wide linear range for TNT from 0.1 to 8 ppm with a sensing limit of 0.95 ppb. The remarkable features are probably attributed to the integrated advantages of the plasmonic properties and synergistic effect.
Style APA, Harvard, Vancouver, ISO itp.
8

Larsson, Elin M., Svetlana Syrenova i Christoph Langhammer. "Nanoplasmonic sensing for nanomaterials science". Nanophotonics 1, nr 3-4 (1.12.2012): 249–66. http://dx.doi.org/10.1515/nanoph-2012-0029.

Pełny tekst źródła
Streszczenie:
AbstractNanoplasmonic sensing has over the last two decades emerged as and diversified into a very promising experimental platform technology for studies of biomolecular interactions and for biomolecule detection (biosensors). Inspired by this success, in more recent years, nanoplasmonic sensing strategies have been adapted and tailored successfully for probing functional nanomaterials and catalysts in situ and in real time. An increasing number of these studies focus on using the localized surface plasmon resonance (LSPR) as an experimental tool to study a process of interest in a nanomaterial, with a materials science focus. The key assets of nanoplasmonic sensing in this area are its remote readout, non-invasive nature, single particle experiment capability, ease of use and, maybe most importantly, unmatched flexibility in terms of compatibility with all material types (particles and thin/thick layers, conductive or insulating) are identified. In a direct nanoplasmonic sensing experiment the plasmonic nanoparticles are active and simultaneously constitute the sensor and the studied nano-entity. In an indirect nanoplasmonic sensing experiment the plasmonic nanoparticles are inert and adjacent to the material of interest to probe a process occurring in/on this material. In this review we define and discuss these two generic experimental strategies and summarize the growing applications of nanoplasmonic sensors as experimental tools to address materials science-related questions.
Style APA, Harvard, Vancouver, ISO itp.
9

Ayivi, Raphael D., Bukola O. Adesanmi, Eric S. McLamore, Jianjun Wei i Sherine O. Obare. "Molecularly Imprinted Plasmonic Sensors as Nano-Transducers: An Effective Approach for Environmental Monitoring Applications". Chemosensors 11, nr 3 (22.03.2023): 203. http://dx.doi.org/10.3390/chemosensors11030203.

Pełny tekst źródła
Streszczenie:
Molecularly imprinted plasmonic nanosensors are robust devices capable of selective target interaction, and in some cases reaction catalysis. Recent advances in control of nanoscale structure have opened the door for development of a wide range of chemosensors for environmental monitoring. The soaring rate of environmental pollution through human activities and its negative impact on the ecosystem demands an urgent interest in developing rapid and efficient techniques that can easily be deployed for in-field assessment and environmental monitoring purposes. Organophosphate pesticides (OPPs) play a significant role for agricultural use; however, they also present environmental threats to human health due to their chemical toxicity. Plasmonic sensors are thus vital analytical detection tools that have been explored for many environmental applications and OPP detection due to their excellent properties such as high sensitivity, selectivity, and rapid recognition capability. Molecularly imprinted polymers (MIPs) have also significantly been recognized as a highly efficient, low-cost, and sensitive synthetic sensing technique that has been adopted for environmental monitoring of a wide array of environmental contaminants, specifically for very small molecule detection. In this review, the general concept of MIPs and their synthesis, a summary of OPPs and environmental pollution, plasmonic sensing with MIPs, surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS) MIP sensors, and nanomaterial-based sensors for environmental monitoring applications and OPP detection have been elucidated according to the recent literature. In addition, a conclusion and future perspectives section at the end summarizes the scope of molecularly imprinted plasmonic sensors for environmental applications.
Style APA, Harvard, Vancouver, ISO itp.
10

Quazi, Mohzibudin Z., Taeyoung Kim, Jinhwan Yang i Nokyoung Park. "Tuning Plasmonic Properties of Gold Nanoparticles by Employing Nanoscale DNA Hydrogel Scaffolds". Biosensors 13, nr 1 (24.12.2022): 20. http://dx.doi.org/10.3390/bios13010020.

Pełny tekst źródła
Streszczenie:
Noble metals have always fascinated researchers due to their feasible and facile approach to plasmonics. Especially the extensive utilization of gold (Au) has been found in biomedical engineering, microelectronics, and catalysis. Surface plasmonic resonance (SPR) sensors are achievable by employing plasmonic nanoparticles. The past decades have seen colossal advancement in noble metal nanoparticle research. Surface plasmonic biosensors are advanced in terms of sensing accuracy and detection limit. Likewise, gold nanoparticles (AuNPs) have been widely used to develop distinct biosensors for molecular diagnosis. DNA nanotechnology facilitates advanced nanostructure having unique properties that contribute vastly to clinical therapeutics. The critical element for absolute control of materials at the nanoscale is the engineering of optical and plasmonic characteristics of the polymeric and metallic nanostructure. Correspondingly, AuNP’s vivid intense color expressions are dependent on their size, shape, and compositions, which implies their strong influence on tuning the plasmonic properties. These plasmonic properties of AuNPs have vastly exerted the biosensing and molecular diagnosis applications without any hazardous effects. Here, we have designed nanoscale X-DNA-based Dgel scaffolds utilized for tuning the plasmonic properties of AuNPs. The DNA nanohydrogel (Dgel) scaffolds engineered with three different X-DNAs of distinct numbers of base pairs were applied. We have designed X-DNA base pair-controlled size-varied Dgel scaffolds and molar ratio-based nano assemblies to tune the plasmonic properties of AuNPs. The nanoscale DNA hydrogel’s negatively charged scaffold facilitates quaternary ammonium ligand-modified positively charged AuNPs to flocculate around due to electrostatic charge attractions. Overall, our study demonstrates that by altering the DNA hydrogel scaffolds and the physical properties of the nanoscale hydrogel matrix, the SPR properties can be modulated. This approach could potentially benefit in monitoring diverse therapeutic biomolecules.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Plasmonic sensing and catalysis"

1

Sil, Devika. "SYNTHESIS AND APPLICATIONS OF PLASMONIC NANOSTRUCTURES". Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/364016.

Pełny tekst źródła
Streszczenie:
Chemistry
Ph.D.
The localized surface plasmon resonance (LSPR), arising due to the collective oscillation of free electrons in metal nanoparticles, is a sensitive probe of the nanostructure and its surrounding dielectric medium. Synthetic strategies for developing surfactant free nanoparticles using ultrafast lasers providing direct access to the metallic surface that harvest the localized surface plasmons will be discussed first followed by the applications. It is well known that the hot carriers generated as a result of plasmonic excitation can participate and catalyze chemical reactions. One such reaction is the dissociation of hydrogen. By the virtue of plasmonic excitation, an inert metal like Au can become reactive enough to support the dissociation of hydrogen at room temperature, thereby making it possible to optically detect this explosive gas. The mechanism of sensing is still not well understood. However, a hypothesis is that the dissociation of hydrogen may lead to the formation of a metastable gold hydride with optical properties distinct from the initial Au nanostructures, causing a reversible increase in transmission and blue shift in LSPR. It will also be shown that by tracking the LSPR of bare Au nanoparticles grown on a substrate, the adsorption of halide ions on Au can be detected exclusively. The shift in LSPR frequency is attributed to changes in electron density rather than the morphology of the nanostructures, which is often the case.
Temple University--Theses
Style APA, Harvard, Vancouver, ISO itp.
2

Bordley, Justin Andrew. "Cubic architectures on the nanoscale: The plasmonic properties of silver or gold dimers and the catalytic properties of platinum-silver alloys". Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/55025.

Pełny tekst źródła
Streszczenie:
This thesis explores both the optical and catalytic properties of cubic shaped nanoparticles. The investigation begins with the sensing capabilities of cubic metal dimers. Of all the plasmonic solid nanoparticles, single Ag or Au nanocubes exhibit the strongest electromagnetic fields. When two nanoparticles are in close proximity to each other the formation of hot spots between plasmonic nanoparticles is known to greatly enhance these electromagnetic fields even further. The sensitivity of these electromagnetic fields as well as the sensitivity of the plasmonic extinction properties is important to the development of plasmonic sensing. However, an investigation of the electromagnetic fields and the corresponding sensing capabilities of cubic shaped dimers are currently lacking. In Chapters 2-5 the optical properties of cubic dimers made of either silver or gold are examined as a function of separation distance, surrounding environment, and dimer orientation. A detailed DDA simulation of Au–Au and Ag-Ag dimers oriented in a face-to-face configuration is conducted in Chapter 2. In this Chapter a distance dependent competition between two locations for hot spot formation is observed. The effect of this competition on the sensing capabilities of these dimers is further explored in Chapters 3 and 4. This competition originates from the generation of two different plasmonic modes. Each mode is defined by a unique electromagnetic field distribution between the adjacent nanocubes. In Chapter 4 the maximum value of the electromagnetic field intensity is investigated for each mode. Notably the magnitude of the electromagnetic field is not directly proportional to its extinction intensity. Furthermore, the sensitivity of a plasmonic mode does not depend on its extinction intensity. The sensitivity is rather a function of the magnitude of the electromagnetic field intensity distribution. Also, the presence of a high refractive index substrate drastically affects the optical properties and subsequent sentivity of the dimer. In Chapter 5 the sensing properties of a cubic dimer is investigated as a function of orientation. As the separation distance of the nanocube dimer is decreased the orientation of the dimer drastically affects its coupling behavior. The expected dipole-dipole exponential coupling behavior of the dimer is found to fail at a separation distance of 14 nm for the edge-to-edge arrangement. The failure of the dipole-dipole coupling mechanism results from an increased contribution from the higher order multipoles (eg. quadrupole-dipole). This behavior begins at a separation distance of 6 nm for the face-to-face dimer. As a result, the relative ratio of the multipole to the dipole moment generated by the edge-to-edge dimer must be larger than the ratio for the face-to-face orientation. In the last section of this thesis the catalytic properties of cubic nanoparticles composed of a platinum-silver alloy are investigated. The catalytic activity and selectivity towards a given reaction is intimately related to the physical and electronic structure of the catalyst. These cubic platinum-silver alloys are utilized as catalysts for the oxygen reduction reaction (ORR). A maximum enhancement in the specific activity (3.5 times greater than pure platinum) towards the ORR is observed for the cubic platinum-silver alloy with the lowest platinum content. This activity is investigated as a function of the physical structure of a cubic shaped catalyst as well as the electronic modifications induced by the formation of a platinum-silver alloy.
Style APA, Harvard, Vancouver, ISO itp.
3

Nelson, Darby. "Nonlinear Processes in Plasmonic Catalysis". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1560853180547478.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ruffato, Gianluca. "Plasmonic Gratings for Sensing Devices". Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422071.

Pełny tekst źródła
Streszczenie:
In last decades surface plasmon resonance has known an increasing interest in the realization of miniaturized devices for label-free sensing applications. The research in the direction of such plasmonic sensors with innovative performance in sensitivity and resolution opened to a wide range of unexpected physical phenomena. This work is aimed at understanding and modeling the physical principles of plasmonic platforms which support the exploitation of propagating plasmon modes for sensing purposes. Surface plasmon polaritons excitation and propagation on metallic gratings have been deeply studied and fully analyzed with theoretical models, numerical simulations and optical characterizations of fabricated samples. In particular the physics underlying azimuthal rotation of these nanostructures and the polarization role in this configuration have been theoretically and experimentally examined. The rotated configurations revealed considerable benefits in sensitivity and this improvement has been demonstrated by analyzing the optical response to surface functionalization and liquid solutions flowing through an embodied microfluidic cell. The exploitation of this plasmonic phenomenon in the conical mounting led to the design and realization of a promising setup for a new class of compact and innovative grating-based sensors. The different approaches, modeling – numerical – experimental, through which the problem has been examined, provided an exhaustive investigation into the physics of grating-coupled surface plasmon resonance and its innovative and original applications for advanced sensing devices.
Negli ultimi decenni la risonanza plasmonica di superficie ha conosciuto un crescente interesse nella realizzazione di dispositivi minaturizzati per applicazioni sensoristiche label-free. La ricerca nella direzione di sensori plasmonici con prestazioni innovative in sensibilita’ e risoluzione ha aperto ad un vasto panorama di inattesi fenomeni fisici. Questo lavoro di tesi ha l’obbiettivo di capire e analizzare i principi fisici su cui si basano i supporti plasmonici che sfruttano l’eccitazione di onde di superficie per fini sensoristici. L’eccitazione e la propagazione di plasmoni polaritoni di superficie su reticoli metallici sono state studiate e analizzate a fondo con modelli teorici, simulazioni numeriche e caratterizzazioni ottiche di campioni nanofabbricati. Nello specifico la fisica della rotazione azimutale di queste nanostrutture e il ruolo della polarizzazione in questa configurazione sono state esaminate con strumenti sia teorici che sperimentali. La rotazione del reticolo plasmonico ha rivelato considerevoli benefici in sensibilita’ e questo effetto e’ stato testato e dimostrato analizzando la risposta ottica a funzionalizzazioni di superficie e tramite l’analisi di soluzioni liquide flussate attraverso una cella microfluidica integrata. L’applicazione di questo fenomeno plasmonico ha portato all’individuazione di una configurazione promettente per una nuova classe di sensori a base plasmonica compatti e innovativi. I differenti approcci, modellistico –numerico – sperimentale, con cui il problema e’ stato affrontato, hanno fornito un’analisi completa della fisica della risonanza plasmonica di superficie con reticoli metallici e delle sue innovative applicazioni per dispositivi sensoristici avanzati.
Style APA, Harvard, Vancouver, ISO itp.
5

Reilly, Thomas H. III. "Plasmonic materials for optical sensing and spectroscopy". Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3239396.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Perino, Mauro. "Characterization of plasmonic surfaces for sensing applications". Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424012.

Pełny tekst źródła
Streszczenie:
My research activity during the Ph. D. period has been focused on the simulation and the experimental characterization of Surface Plasmon Polaritons (SPP). Surface Plasmon Polaritons are evanescent electromagnetic waves that propagate along a metal/dielectric interface. Since their excitation momentum is higher than that of the photons inside the dielectric medium, they cannot be excited just by lighting the interface, but they need some particular coupling configurations. Among all the possible configurations the Kretschmann and the grating are those largely widespread. When the SPP coupling conditions are reached, abrupt changes of some components of the light reflected or transmitted at the metal/dielectric interface appear. Usually this resonances are characterized by a minimum of the reflectance acquired as a function of the incident angle or light wavelength. Several experimental methods are available to detect these SPP resonances, for instance by monitoring the light intensity, its polarization or its phase. Changes in the physical conditions of the metal/dielectric interface produce some changes of the SPP coupling constant, and consequently a shift in the resonance position. If these changes derive from a molecular detection process, it is possible to correlate the presence of the target molecules to the resonance variations, thus obtaining a dedicated SPP sensor. I focused the first part of my Ph.D. activity on the simulation of SPP resonances by using several numerical techniques, such as the Rigorous Coupled Wave Analysis method, the Chandezon method, and the Finite Element Method implemented through Comsol v3.5. I simulated the SPP resonance in the Kretschmann coupling configuration for plane and nano-grating structured metal/dielectric interfaces. Afterward, I calculated the SPP resonance behaviour for grating and bi-dimensional periodic structures lighted in the conical configuration. Furthermore, I analysed the correlations between the grating coupling method and the Kretschamann coupling method. Through all these simulations, I studied the sensitivity of the different SPP resonances to the refractive index variation of the dielectric in contact with the metal. In this way, I was able to find a new parameter suitable for describing the SPP resonance, i.e., the azimuthal angle. By considering this particular angle, the sensitivity of the SPP resonances could be properly set according to the experimental needs and, even more important, noticeably increased to high values. Experimentally I used two opto-electronic benches, one for the Kretschmann configuration and one for the conical mounting configuration. I have performed experimental measurements, in order to compare the experimental data with the simulations. In particular the following conditions were tested: • Plane interface, Kretschmann configuration • Nanostructured grating, Kretschmann configuration • Nanostructured grating, Conical configuration I focused my attention on the nano-structured grating in conical mounting configuration. I found an innovative way to characterize its SPP resonances, by measuring the transmitted signal as a function of the incident and azimuthal angles. The transmittance and the azimuthal sensitivities were characterized with the gratings in both air and water. In order to study the experimental azimuthal sensitivity, I changed the liquid refractive index in contact with the grating by using different water/glycerol solutions. Moreover, I functionalized the surface by using thiolated molecules that form Self Assembled Monolayer onto the metallic layer. In this way, I was able to change the SPP coupling constants and detect the corresponding azimuthal resonance shifts. I also detected the immobilization of an antibody layer onto the metallic surface of the plasmonic interface. All the devices I used in the experimental measurements were produced by the University spin off Next Step Engineering.
Durante il mio periodo di dottorato in Scienza e Tecnologia dell’Informazione l’attività di ricerca principale è stata focalizzata sulla caratterizzazione, simulativa e sperimentale, dei plasmoni di superficie. I plasmoni di superficie sono onde elettromagnetiche evanescenti che si propagano all’interfaccia tra un mezzo metallico ed un mezzo dielettrico. Il loro vettore d’onda è più elevato rispetto a quello della luce nel mezzo dielettrico. Per poter quindi generare l’eccitazione si devono utilizzare particolari tecniche di accoppiamento. I due metodi più diffusi sono l’accoppiamento Kretschmann e l’accoppiamento tramite reticolo. Una volta raggiunte le condizioni di accoppiamento dei plasmoni di superficie, si realizza il fenomeno della risonanza plasmonica, la quale si manifesta attraverso brusche variazioni nelle componenti della luce riflessa o trasmessa dalla superficie. Tipicamente si può registrare un minimo della riflettanza in funzione dell’angolo di incidenza della luce sulla superficie. Esistono, tuttavia, anche altre modalità per registrare e misurare queste risonanze, come ad esempio monitorando intensità, polarizzazione o fase della luce trasmessa e riflessa dalla superficie, in funzione della sua lunghezza d’onda o dei sui angoli di incidenza. Le variazioni chimico/fisiche che avvengono all’interfaccia metallo/dielettrico, modificando la costante di accoppiamento plasmonica, cambiano le condizioni di risonanza. Nel caso in cui le variazioni all’interfaccia siano dovute ad un processo di riconoscimento molecolare è possibile rilevare le molecole d’interesse valutando i cambiamenti della risonanza plasmonica, fornendo così l’opportunità per l’implementazione di sensori specifici. L’attività di dottorato è stata focalizzata innanzitutto sullo studio teorico del comportamento della risonanza plasmonica, utilizzando varie tecniche di simulazione numerica: il metodo RCWA (Rigorous Coupled Wave Analysis), Il metodo di Chandezon ed il metodo agli elementi finiti, implementato tramite Comsol v3.5. Ho poi affrontato lo studio, tramite simulazioni, delle risonanze di superficie in configurazione Kretschmann, sia per interfacce metallo/dielettrico piane sia per interfacce nano-strutturate. Considerando una configurazione conica, ho simulato le risonanze di superficie per nano-strutture reticolari e per nano-strutture bi-dimensionali periodiche. Inoltre ho analizzato il legame tra le modalità di accoppiamento grating e Kretschmann. Tramite queste simulazioni mi è stato possibile valutare e studiare la sensibilità delle varie risonanze plasmoniche alla variazione di indice di rifrazione, quando essa avviene all’interfaccia metallo/dielettrico. È stato così possibile identificare un nuovo parametro per descrivere la risonanza plasmonica e la sua sensibilità, ossia l’angolo azimutale, definito come l’angolo tra il vettore del grating ed il piano di scattering della luce. Considerando questo particolare angolo, la sensibilità del sensore può essere controllata con un’opportuna regolazione degli altri parametri coinvolti nell’eccitazione plasmonica, consentendole di raggiungere valori molto elevati. Successivamente, grazie all’utilizzo di due banchi, uno per la configurazione Kretschmann ed uno per la misura di reticoli nano-strutturati in configurazione conica, ho realizzato delle campagne di misure sperimentali. E’ stato così possibile confrontare i risultati sperimentali con le simulazioni numeriche per le seguenti condizioni: • Interfaccia piana, configurazione Kretschmann • reticolo nano-strutturato, configurazione Kretschmann • reticolo nano-strutturato, configurazione conica L’attività sperimentale si è particolarmente focalizzata sul reticolo nano-strutturato, sia per l’innovativa modalità di caratterizzazione delle sue risonanze plasmoniche (valutazione del segnale trasmesso in funzione dell’angolo di incidenza e dell’angolo azimutale), sia per l’elevata sensibilità ottenuta valutando la variazione dell’angolo azimutale. La caratterizzazione è stata effettuata sia per il reticolo esposto all’aria che per il reticolo immerso in un liquido (tipicamente acqua). Per poter verificare il comportamento della sensibilità azimutale ho variato l’indice di rifrazione del liquido in contatto con la superficie utilizzando soluzioni miste di acqua e glicerolo. Inoltre, tramite tecniche di funzionalizzazione della superficie, ovvero applicando delle molecole thiolate che vengono adsorbite sulla parte metallica dell’interfaccia, mi è stato possibile variare le costanti di accoppiamento plasmonico, in modo da verificare la capacità del dispositivo di rilevare l’avvenuta creazione di uno strato molecolare sulla superficie. Inoltre ho positivamente verificato la capacità di immobilizzare uno strato di anticorpi sulla superficie plasmonica. Tutte le misure sperimentali che ho svolto in questa tesi sono state effettuate su sensori con superfici piane o nano-strutturate prodotte dallo spin-off universitario Next Step Engineering, con il quale ho collaborato durante il percorso di ricerca.
Style APA, Harvard, Vancouver, ISO itp.
7

Fan, Yinan. "Rational synthesis of plasmonic/catalytic bimetallic nanocrystals for catalysis". Thesis, Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS189.pdf.

Pełny tekst źródła
Streszczenie:
Parmi les différents nanocatalyseurs, ceux constitués de nanoparticules de métaux nobles méritent une attention particulière en raison de leurs propriétés électroniques, chimiques et même optiques (dans le cas de transformations renforcées par les plasmons). Le platine ou le palladium sont bien connus pour leurs remarquables propriétés catalytiques, mais ils sont chers et leurs ressources sont limitées. En outre, les nanocatalyseurs monométallique ne peuvent conduire qu'à une gamme limitée de réactions chimiques. Ainsi, notre stratégie a été de développer des nanocatalyseurs bimétalliques composés de deux éléments métalliques qui peuvent présenter des effets synergiques entre leurs propriétés physicochimiques et une activité catalytique accrue. Nous avons ainsi conçu des nanocatalyseurs bimétalliques de type cœur-coquille composés d'un cœur en argent et d'une coquille en platine. L'intérêt est de combiner les activités catalytiques élevées et efficaces de la coquille de platine avec le cœur d'argent hautement énergétique, capable de renforcer les activités de la coquille grâce à ses propriétés plasmoniques. En outre, ces nanoparticules bimétalliques présentent souvent une activité catalytique supérieure en raison de la modification de la distance inter-atomique Pt-Pt (c'est-à-dire l'effet de contrainte). Dans ce travail de thèse, les nanoparticules Ag@Pt ont été synthétisées via un processus en deux étapes utilisant d'une part des nanoparticules d'Ag synthétisées chimiquement comme germes et d'autre part des complexes platine-oleylamine qui sont ensuite réduits à la surface des germes à une température contrôlée. Différentes tailles de germes d'Ag de 8 à 14 nm avec une très faible distribution de taille (<10%) ont été obtenues en ajustant le temps de réaction, la rampe de température, la concentration en précurseur d'Ag et la température finale pendant la synthèse. Différentes épaisseurs de coquille (de 1 à 6 couches atomiques) ont été obtenues en ajustant le rapport entre les concentrations de précurseur de platine et de germe d'argent. L'activité catalytique des nanoparticules Ag@Pt a été testée en considérant une réaction modèle de réduction du 4-nitrophénol en 4-aminophénol par NaBH4 en phase aqueuse. Nous avons observé que l'épaisseur de la coquille de Pt et la taille du noyau d'Ag influençaient les propriétés catalytiques et conduisaient à une activité catalytique accrue par rapport à l'argent ou au platine pur. Ceci a été attribué à des effets synergiques. De plus, nous avons observé une augmentation de l'activité catalytique des nanoparticules Ag et Ag@Pt sous irradiation lumineuse. Ce phénomène a été corrélé à la génération d'électrons chauds dans les noyaux d'Ag. Afin de développer une plateforme de nanocatalyse supportée, nous avons fabriqué des auto-assemblages 3D appelés aussi supercristaux composés de nanoparticules d'Ag@Pt obtenus spontanément après dépôt sur un substrat solide en raison de leur distribution de taille étroite et de leur forme homogène. L'activité catalytique de ces supercristaux pour la réaction d'évolution de l’hydrogène (HER) a été étudiée en suivant in situ par microscopie optique la production de nanobulles de gaz H2. Trois comportements distincts dans l'activité photo-catalytique (activité, activité intermittente et non-activité) ont été observés sur les supercristaux dans la même région d'intérêt. En outre, 50 % des assemblages ont été déterminés comme étant actifs pour l'HER qui a été démontrée comme étant accompagnée par une corrosion oxydative de l’argent
Among several nanocatalysts, those based on noble metal NPs deserve particular attention because of their electronic, chemical and even optical properties (in the case of plasmonic-enhanced transformations). Platinum or palladium are well known for their remarkable catalytic properties, but they are expensive and their resources are limited. In addition, single component nanocatalysts can only lead to a limited range of chemical reactions. Thus, our strategy was to develop bimetallic nanocatalysts composed of two metal elements that can exhibit synergistic effects between their physicochemical properties and enhanced catalytic activity. We have thus designed bimetallic nanocatalysts of the core-shell type composed of a silver core and a platinum shell. The interest is to combine the high and efficient catalytic activities of the platinum shell surface with the highly energetic silver core capable of enhancing the activities of the shell through its plasmonic properties. In addition, these bimetallic NPs often exhibit superior catalytic activity due to the modification of the Pt-Pt atomic bonding distance (i.e. the strain effect). In this thesis work, Ag@Pt NPs have been synthesized via a two-step process using chemically synthesized spherical Ag NPs as seeds on the one hand and platinum complexes with oleylamine on the other hand which are then reduced on the surface of the seeds at a controlled temperature. Different Ag seed sizes from 8 to 14 nm with a very low size distribution (<10%) have been obtained by adjusting the reaction time, temperature ramp, Ag precursor concentration and final temperature during the synthesis. The control of the shell thicknesses (from 1 to 6 atomic layers) has been possible by adjusting the ratio of platinum precursor to silver seed concentrations. The catalytic activity of the core-shell Ag@Pt NPs was tested by a model reaction of reduction of 4-nitrophenol to 4-aminophenol by NaBH4 in aqueous phase. We have observed that the thickness of the Pt shell and the size of the Ag core influence the catalytic properties and led increased catalytic activity compared to pure silver or platinum. This was attributed to synergistic effects. Furthermore, we have observed an enhancement of the catalytic activity of Ag and Ag@Pt NPs under light irradiation. This is correlated to the generation of hot electrons in the Ag core. Finally, in order to develop a supported nanocatalysis platform, 3D self-assemblies also called supercrystals composed of Ag@Pt nanoparticles have been spontaneously obtained after deposition on a solid substrate due to their narrow size distribution and homogeneous shape. The catalytic activity of these supercrystals for the hydrogen evolution reaction (HER) has been studied by following in situ by optical microscopy the production of H2 gas nanobubbles. Three distinct behaviors in photo-catalytic activity (activity, intermittent activity and non-activity) have been observed on the supercrystals in the same region of interest. In addition, 50% of the assemblies were determined to be active for HER which was shown to be accompanied by oxidative corrosion of silver
Style APA, Harvard, Vancouver, ISO itp.
8

Sun, Xu. "Hybrid Plasmonic Devices for Optical Communication and Sensing". Doctoral thesis, KTH, Optik och Fotonik, OFO, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205974.

Pełny tekst źródła
Streszczenie:
Hybrid plasmonic (HP) waveguides, a multi-layer waveguide structure supporting a hybrid mode of surface plasmonics and Si photonics, is a compromise way to integrate plasmonic materials into Si or SOI platforms, which can guide optical waves of sub-wavelength size, and with relative low propagation loss. In this thesis, several HP waveguides and devices are developed for the purposes of optical communications and sensing. The single-slot HP ring resonator sensor with 2.6µm radius can give a quality factor (Q factor) of 1300 at the communication wavelength of 1.5µm with a device sensitivity of 102nm/RIU (refractive index unit). The Mach-Zehnder interferometer (MZI) with a 40µm double-slot HP waveguide has a device sensitivity around 474nm/RIU. The partly open silicon side-coupled double-slot HP ring resonator has a device sensitivity of 687.5nm/RIU, with a Q factor over 1000 after optimization. Further, an all-optical switching HP donut resonator with a photothermal plasmonic absorber is developed, utilizing the thermal expansion effect of silicon to shift the resonant peak of the HP resonator. The active area has a radius of 10µm to match the core size of a single-mode fiber. By applying 10mW power of the driving laser to the absorber, the resonator transmitted power can be changed by 15dB, with an average response time of 16µs. Using the same fabrication flow, and removing the oxide materials using hydrogen fluoride wet etching, a hollow HP waveguide is fabricated for liquid sensing applications. The experimentally demonstrated waveguide sensitivity is about 0.68, which is more than twice that of pure Si waveguide device. Microelectromechanical systems (MEMS) can also be integrated into vertical HP waveguides. By tuning the thickness of the air gap, over 20dB transmitted power change was experimentally demonstrated. This can be used for optical switching applications by either changing the absorption or phase of the HP devices.

QC 20170427

Style APA, Harvard, Vancouver, ISO itp.
9

Ahmadivand, Arash. "Plasmonic Nanoplatforms for Biochemical Sensing and Medical Applications". FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3576.

Pełny tekst źródła
Streszczenie:
Plasmonics, the science of the excitation of surface plasmon polaritons (SPP) at the metal-dielectric interface under intense beam radiation, has been studied for its immense potential for developing numerous nanophotonic devices, optical circuits and lab-on-a-chip devices. The key feature, which makes the plasmonic structures promising is the ability to support strong resonances with different behaviors and tunable localized hotspots, excitable in a wide spectral range. Therefore, the fundamental understanding of light-matter interactions at subwavelength nanostructures and use of this understanding to tailor plasmonic nanostructures with the ability to sustain high-quality tunable resonant modes are essential toward the realization of highly functional devices with a wide range of applications from sensing to switching. We investigated the excitation of various plasmonic resonance modes (i.e. Fano resonances, and toroidal moments) using both optical and terahertz (THz) plasmonic metamolecules. By designing and fabricating various nanostructures, we successfully predicted, demonstrated and analyzed the excitation of plasmonic resonances, numerically and experimentally. A simple comparison between the sensitivity and lineshape quality of various optically driven resonances reveals that nonradiative toroidal moments are exotic plasmonic modes with strong sensitivity to environmental perturbations. Employing toroidal plasmonic metasurfaces, we demonstrated ultrafast plasmonic switches and highly sensitive sensors. Focusing on the biomedical applications of toroidal moments, we developed plasmonic metamaterials for fast and cost-effective infection diagnosis using the THz range of the spectrum. We used the exotic behavior of toroidal moments for the identification of Zika-virus (ZIKV) envelope proteins as the infectious nano-agents through two protocols: 1) direct biding of targeted biomarkers to the plasmonic metasurfaces, and 2) attaching gold nanoparticles to the plasmonic metasurfaces and binding the proteins to the particles to enhance the sensitivity. This led to developing ultrasensitive THz plasmonic metasensors for detection of nanoscale and low-molecular-weight biomarkers at the picomolar range of concentration. In summary, by using high-quality and pronounced toroidal moments as sensitive resonances, we have successfully designed, fabricated and characterized novel plasmonic toroidal metamaterials for the detection of infectious biomarkers using different methods. The proposed approach allowed us to compare and analyze the binding properties, sensitivity, repeatability, and limit of detection of the metasensing devices
Style APA, Harvard, Vancouver, ISO itp.
10

Neri, Simona. "Tunable nanosystems for sensing and catalysis". Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424423.

Pełny tekst źródła
Streszczenie:
Au NP have emerged as versatile scaffolds for applications in sensing and catalysis due to their unique features such as high stability, biocompatibility, ease of preparation, size- and shape-dependent optical and electronic properties and high surface area to volume ratio. The surface of Au NP can be readily modified with ligands containing functional groups such as thiols, phosphines and amines, which exhibit strong affinity for gold surfaces. The cooperative and collective effects achieved by the organization of organic components on the particle provide all the characteristics of a multivalent surface. Multivalent interactions on the monolayer surface can, hence, be applied to strengthen an interaction between the surface and small molecules. In particular, the self-assembly of small molecules on the multivalent surface of Au NP permits the realization of dynamic complex chemical systems that can be applied in the fields of catalysis, sensing and for the creation of tunable materials. In the first part of this Thesis, the catalytic abilities of mixed monolayer gold nanoparticles composed of 8-trimethylammonium-octanethiol and different length thiols bearing the 4'-methyl-2,2'-bipyridine•Cu2+ complex has been studied. In particular, the influence of the geometry of the mixed monolayer gold nanoparticles on the efficiency and selectivity of the Diels-Alder reaction between cinnamoyl-1-methyl-1H-imidazole and cyclopentadiene has been studied. At the same time, the effect of the chiral environment obtained through the self-assembly of chiral peptide (Ac-(LLLL)-Leu-Leu-Gly-Trp-Ser(PO3H2)) on the enantioselection was evaluated. The results indicated in one case the formation of additional products. This can be justified considering the steric interactions between the alkyl chains and the catalysts when the catalytic headgroup is level with the monolayer surface. Furthermore, it was demonstrated that the self-assembly of a chiral enviroment on the surface of the Au NP can induce enantioselectivity, although only modestly. In the second part of the thesis, a modular indicator-displacement-assay is presented. Small molecules with biological relevance are selectively recognized under competitive conditions by using Au NP functionalized with thiols terminating with 1,4,7-triazacyclononane (TACN)•Zn2+. The assay relies on the change in affinity of macrocyclic receptors, such as cavitands, cyclodextrins or calixarenes, for monolayer protected gold nanoparticles upon complexation of the respective target analyte. This change affects the equilibrium between the nanoparticles and a fluorescent reporter molecule leading towards a change in intensity of the fluorescent output signal. The recognition modules can be changed in order to tune the selectivity of the assay without affecting the nature of the output signal. The combined use of recognition modules results in an assay able to detect multiple analytes simultaneously and with high selectivity. A study of the orthogonality of the different receptor-analyte couples led to the demonstration of the possible exploitation of these kinds of arrays within the context of molecular computing. In the third part, the possibility to self-assemble the molecular switch 4-(phenylazo)benzoic acid on the surface of Au NP functionalized with thiols terminating with 1,4,7-triazacyclononane (TACN)•Zn2+ was studied in order to reversibly modulate by light, the affinity of small molecules for the surface. The displacement studies of both probes 343Coumarin-GDDD and 6,8-dihydroxy-1,3-pyrenedisulfonic acid by cis/trans 4-(phenylazo)benzoic acid revealed that the two isomers have different affinities for the surface.This key point was then exploited to use light for the reversible up- and downregulation of the catalytic activity of the nanoparticle under investigation.
L’ importanza delle Au NP come supporto versatile per applicazioni nell’ambito della catalisi e dei sensori nasce dalle loro esclusive caratteristiche come, ad esempio, alta stabilità, biocompatibilità, facilità di preparazione, specifiche proprietà ottiche and elettroniche dipendenti dalla forma e dalle dimensioni e dal loro alto rapporto area/volume. Inoltre, la superficie delle Au NP può essere facilmente funzionalizzata mediante leganti contenenti vari gruppi funzionali, come tioli, fosfine e ammine che presentano alta affinità per la superficie d’oro. Gli effetti collettivi e cooperativi ottenuti grazie all’organizzazione di componenti organici sulla particella, fornisce multivalenza alla superficie. Le interazioni multivalenti sul monostrato possono, quindi, essere applicate per rafforzare un’interazione tra la superficie funzionalizzata e piccole molecole. In particolare l’auto assemblaggio di piccole molecole su una superficie multivalente permette la realizzazione di sistemi chimici dinamici che possono essere applicati nel campo della catalisi, dei sensori e per la creazione di sistemi regolabili. Nella prima parte della Tesi, viene studiata la capacità catalitica di nanoparticelle composte da un monostrato misto (in particolare composte da 8-trimetilammonio-octiltiolo e tioli di diversa lunghezza contenenti il complesso metallico 4’-metil-2,2’-bipiridina•Cu2+ . In particolare viene studiata l’influenza della geometria indotta dal monostrato misto sulla efficienza e selettività della reazione di Diels-Alder tra cinnamoil-1-metil-1H- imidazolo e il ciclopentadiene. Allo stesso tempo, viene studiato l’effetto dell’ambiente chirale ottenuto grazie all’autoassemblaggio di un peptide chirale (Ac-(LLLL)-Leu-Leu-Gly-Trp-Ser(PO3H2)) sulla enantioselettività della reazione. I risultati dimostrano che in alcuni casi la geometria può influenzare la formazione di prodotti addizionali. Questo può essere giustificato come il risultato di interazioni steriche tra catene alchiliche e catalizzatore, quando quest’ultimo si trova alla pari della superficie del monostrato. Inoltre, è stato dimostrato che, assemblando un peptide chirale sulla superficie delle Au NP, è possibile indurre enantioselettività, sebbene limitata. Nella seconda parte della Tesi viene presentato un saggio modulare basato sullo spiazzamento di un indicatore. Piccole molecole con rilevanza biologica sono selettivamente riconosciute utilizzando Au NP funzionalizzate con tioli che presentano come gruppo terminale il 1,4,7-triazaciclononano (TACN)•Zn2+. Il saggio si basa sul cambio di affinità di recettori macrociclici come, ad esempio cavitandi, ciclodestrine o calixareni, per le nanoparticelle, dopo avere formato il complesso con la loro rispettiva molecola bersaglio. Questo cambio influenza l’equilibrio tra nanoparticelle e una sonda fluorescente e provoca, di conseguenza, un cambio nel segnale di fluorescenza. I moduli di riconoscimento possono essere cambiati in modo da poter controllare la selettività del saggio senza influenzare la natura del segnale in uscita. L’ utilizzo contemporaneo di tre moduli permette di creare un sistema capace di rivelare più analiti simultaneamente e con alta selettività. Lo studio dell’ortogonalità delle differenti coppie recettore/analita permette di dimostrare la possibilità di utilizzo di questo tipo di sistemi nel campo dei computer molecolari. Nella terza parte viene studiata la possibilità di auto assemblare l’interruttore molecolare acido 4-(fenilazo)benzoico sulla superficie di Au NP funzionalizzate con tioli che presentano come gruppo terminale il 1,4,7-triazaciclononano (TACN)•Zn2+, con lo scopo di modulare con la luce (in modo reversibile) l’affinità di piccole molecole per la superficie. Gli studi di spiazzamento di entrambi i probe cumarina343-GDDD e l’acido 6,8-diidrossi-1,3-pirenedisulfonico promosso dal cis/trans acido 4-(fenilazo)benzoico rivelano che i due isomeri hanno diverse affinità per la superficie delle nanoparticelle. Questo punto chiave viene sfruttato per permettere la regolazione tramite luce dell’attività delle nanoparticelle in esame.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Plasmonic sensing and catalysis"

1

Zhang, Ya-Wen. Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics, and Sensing Applications. Wiley & Sons, Limited, John, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zhang, Ya-Wen. Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics, and Sensing Applications. Wiley & Sons, Incorporated, John, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Zhang, Ya-Wen. Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics, and Sensing Applications. Wiley & Sons, Incorporated, John, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zhang, Ya-Wen. Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics and Sensing Applications. Wiley & Sons, Limited, John, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Plasmonic Nanoelectronics and Sensing. Cambridge University Press, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Li, Er-Ping, i Hong-Son Chu. Plasmonic Nanoelectronics and Sensing. Cambridge University Press, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Li, Er-Ping, i Hong-Son Chu. Plasmonic Nanoelectronics and Sensing. Cambridge University Press, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Cortés, Emiliano, i Pedro H. C. Camargo. Plasmonic Catalysis: From Fundamentals to Applications. Wiley & Sons, Limited, John, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Cortés, Emiliano, i Pedro H. C. Camargo. Plasmonic Catalysis: From Fundamentals to Applications. Wiley & Sons, Incorporated, John, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Cortés, Emiliano, i Pedro H. C. Camargo. Plasmonic Catalysis: From Fundamentals to Applications. Wiley & Sons, Incorporated, John, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Plasmonic sensing and catalysis"

1

Ramakrishnan, Sundaram Bhardwaj, Ravi Teja A. Tirumala, Farshid Mohammadparast, Tong Mou, Tien Le, Bin Wang i Marimuthu Andiappan. "Plasmonic photocatalysis". W Catalysis, 38–86. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839163128-00038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Butt, Muhammad Ali, Svetlana Nikolaevna Khonina i Nikolay Lvovich Kazanskiy. "Plasmonic Sensing Devices". W Plasmonics-Based Optical Sensors and Detectors, 51–77. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003438304-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Zhang, Zhenglong. "Plasmon-Driven Catalysis of Molecular Reactions". W Plasmonic Photocatalysis, 63–70. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5188-6_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zhang, Zhenglong. "Plasmon-Driven Catalysis of Nanomaterials Growth". W Plasmonic Photocatalysis, 81–91. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5188-6_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Hu, Dora Juan Juan, i Aaron Ho-Pui Ho. "Plasmonic Photonic Crystal Fibers". W Advanced Fiber Sensing Technologies, 1–12. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5507-7_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Tittl, Andreas, Harald Giessen i Na Liu. "Plasmonic Gas and Chemical Sensing". W Nanomaterials and Nanoarchitectures, 239–72. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9921-8_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Martinsson, Erik, i Daniel Aili. "Refractometric Sensing Using Plasmonic Nanoparticles". W Encyclopedia of Nanotechnology, 1–11. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_100984-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Martinsson, Erik, i Daniel Aili. "Refractometric Sensing Using Plasmonic Nanoparticles". W Encyclopedia of Nanotechnology, 3432–40. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_100984.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

HANHAM, STEPHEN M., i STEFAN A. MAIER. "Terahertz Plasmonic Surfaces for Sensing". W Active Plasmonics and Tuneable Plasmonic Metamaterials, 243–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118634394.ch8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Martín Becerra, Diana. "Analysis of the Sensing Capability of Plasmonic and Magnetoplasmonic Interferometers". W Active Plasmonic Devices, 59–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48411-2_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Plasmonic sensing and catalysis"

1

Alanazi, Ahmed, i James H. Rice. "P3HT: PCBm organic polymer supported plasmonic photo-catalysis and sensing." W Organic Electronics and Photonics: Fundamentals and Devices III, redaktorzy Sebastian Reineke, Koen Vandewal i Wouter Maes. SPIE, 2022. http://dx.doi.org/10.1117/12.2632153.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kim, Dong Ha, Huan Wang, Kyungwha Chung, Ji Eun Lee, Ju Won Lim, Subin Yu i Minju Kim. "Plasmon-enhanced multi-functions: from sensing, catalysis, optoelectronics to electrics (Conference Presentation)". W Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVI, redaktorzy Takuo Tanaka i Din Ping Tsai. SPIE, 2018. http://dx.doi.org/10.1117/12.2319392.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Qiu, Suyan, Fusheng Zhao, Jingting Li i Wei-Chuan Shih. "Multimodal signal amplification by collaborative plasmonic intensification and catalytic multiplication (c-PI/CM)". W Label-free Biomedical Imaging and Sensing (LBIS) 2019, redaktorzy Natan T. Shaked i Oliver Hayden. SPIE, 2019. http://dx.doi.org/10.1117/12.2509399.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

"Section 7: Materials for sensing and catalysis". W 2014 IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE). IEEE, 2014. http://dx.doi.org/10.1109/omee.2014.6912418.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Layden, Emily, Tabitha Coulter, Joseph Lukens, Nicholas A. Peters, Ben Lawrie i Raphael Pooser. "Nonlinear Interferometric Plasmonic Sensing". W Laser Science. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ls.2016.lf2e.6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Lawrie, Ben, Wenjiang Fan, Phil Evans i Raphael Pooser. "Ultratrace Quantum Plasmonic Sensing". W Optical Sensors. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/sensors.2015.sew1b.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Briscoe, Jayson L., Sang-Yeon Cho i Igal Brener. "Defect-assisted plasmonic sensing". W 2013 IEEE Sensors. IEEE, 2013. http://dx.doi.org/10.1109/icsens.2013.6688551.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Masson, Jean-Francois, Maxime Couture, Hugo-Pierre Poirier-Richard, Hu Zhu, Hélène Yockell-Lelièvre i Thibault Brulé. "2D plasmonic nanostructures for sensing". W Optical Sensors. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/sensors.2015.ses4c.2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Guo, Xin. "Metal Nanowire for Plasmonic Sensing". W Optical Sensors. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/sensors.2015.set3c.2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Yu, Renwen, Joel D. Cox i F. Javier Garcia de Abajo. "Nonlinear plasmonic sensing with nanographene". W 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086508.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Plasmonic sensing and catalysis"

1

Alivisatos, A. P., Gabor A. Somorjai i Peidong Yang. Plasmonic-Enhanced Catalysis. Fort Belvoir, VA: Defense Technical Information Center, maj 2012. http://dx.doi.org/10.21236/ada576759.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Cabrini, Stefano. Lab-on-Chip device with sub-10 nm nanochannels and plasmonic resonators for single molecule sensing applications. Office of Scientific and Technical Information (OSTI), maj 2016. http://dx.doi.org/10.2172/1431230.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Radu, Daniela Rodica. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection. Office of Scientific and Technical Information (OSTI), styczeń 2004. http://dx.doi.org/10.2172/837277.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii